Cross-sectional interactions in cryptocurrency returns☆

被引:0
|
作者
Mercik, Aleksander [1 ]
Bedowska-Sojka, Barbara [2 ]
Karim, Sitara [3 ]
Zaremba, Adam [4 ,5 ,6 ]
机构
[1] Wroclaw Univ Econ & Business, Dept Financial Investments & Risk Management, Ul Komandorska 118-120, PL-53345 Wroclaw, Poland
[2] Poznan Univ Econ & Business, Inst Informat & Quantitat Econ, Dept Econometr, Al Niepodleglosci 10, PL-61875 Poznan, Poland
[3] ILMA Univ, Fac Management Sci, Dept Business Adm, Karachi, Pakistan
[4] MBS Sch Business, 2300, Ave Moulins, F-34185 Montpellier, France
[5] Poznan Univ Econ & Business, Inst Finance, Dept Investment & Capital Markets, Al Niepodleglosci 10, PL-61875 Poznan, Poland
[6] Monash Univ, Monash Ctr Financial Studies, Melbourne, Vic, Australia
关键词
Cryptocurrency markets; Return predictability; The cross-section of returns; Interactions; Anomalies; REJECTIVE MULTIPLE TEST; FALSE DISCOVERY RATE; BID-ASK SPREADS; MOMENTUM; INEFFICIENCY; INFORMATION; VOLATILITY; DRIFT; SIZE;
D O I
10.1016/j.irfa.2024.103809
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We investigate interaction effects in cryptocurrency markets by constructing and evaluating double-sorted portfolios based on 40 different characteristics. Using a dataset of over 500 major coins and tokens from 2017 to 2023, we identify numerous significant interactions. The most pronounced effects arise from the interplay of liquidity, risk, and past return measures. An out-of-sample long-short strategy that selects the top and bottom interactions achieves a Sharpe ratio exceeding 1. However, network graph analysis and additional tests reveal that low liquidity, which raises transaction costs, can dampen trading activity and contribute to the persistence of these anomalies.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] An examination of conditional effect on cross-sectional returns: Singapore evidence
    So, Simon M. S.
    Tang, Gordon Y. N.
    APPLIED ECONOMICS, 2010, 42 (06) : 777 - 795
  • [42] Common risk factors in cross-sectional FX options returns
    Zhang, Xuanchen
    So, Raymond H. Y.
    Driouchi, Tarik
    REVIEW OF FINANCE, 2024, 28 (03) : 897 - 944
  • [43] Cross-Sectional Expected Returns and Predictability in the Korean Stock Market
    Kim, Toyoung
    Kim, Tong Suk
    Park, Yuen Jung
    EMERGING MARKETS FINANCE AND TRADE, 2020, 56 (15) : 3763 - 3784
  • [44] Value at risk, cross-sectional returns and the role of investor sentiment
    Bi, Jia
    Zhu, Yifeng
    JOURNAL OF EMPIRICAL FINANCE, 2020, 56 : 1 - 18
  • [45] Machine learning techniques for cross-sectional equity returns’ prediction
    Christian Fieberg
    Daniel Metko
    Thorsten Poddig
    Thomas Loy
    OR Spectrum, 2023, 45 : 289 - 323
  • [46] The importance of psychology: Anchoring bias and cross-sectional stock returns
    Xie, Jun
    Feng, Jinyu
    Gao, Bin
    INTERNATIONAL JOURNAL OF MENTAL HEALTH NURSING, 2024, 33 : 37 - 37
  • [47] The Cross-Sectional Dispersion of Stock Returns, Alpha, and the Information Ratio
    Gorman, Larry R.
    Sapra, Steven G.
    Weigand, Robert A.
    JOURNAL OF INVESTING, 2010, 19 (03): : 113 - 127
  • [48] Machine learning techniques for cross-sectional equity returns' prediction
    Fieberg, Christian
    Metko, Daniel
    Poddig, Thorsten
    Loy, Thomas
    OR SPECTRUM, 2023, 45 (01) : 289 - 323
  • [49] Time-series and cross-sectional momentum in anomaly returns
    Wang, Feifei
    Yan, Xuemin
    Zheng, Lingling
    EUROPEAN FINANCIAL MANAGEMENT, 2021, 27 (04) : 736 - 771
  • [50] Forecasting of density functions with an application to cross-sectional and intraday returns
    Kokoszka, Piotr
    Miao, Hong
    Petersen, Alexander
    Shang, Han Lin
    INTERNATIONAL JOURNAL OF FORECASTING, 2019, 35 (04) : 1304 - 1317