The rank enumeration of certain parabolic non-crossing partitions

被引:0
|
作者
Krattenthaler, Christian [1 ]
Muehle, Henri [2 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tech Univ Dresden, Inst Algebra, Zellescher Weg 12-14, D-01069 Dresden, Germany
来源
ALGEBRAIC COMBINATORICS | 2022年 / 5卷 / 03期
关键词
Non-crossing partition; generating function; Lagrange inversion; zeta polynomial; Dyck path; ballot path; NONCROSSING PARTITIONS; COXETER GROUPS; LATTICE; NUMBERS; CHAINS;
D O I
10.5802/alco.219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider m-divisible non-crossing partitions of {1 , 2, ... , mn } with the property that for some t n no block contains more than one of the integers 1, 2, ... , t . We give a closed formula for the number of multi-chains of such non-crossing partitions with prescribed number of blocks. Building on this result, we compute Chapoton's M-triangle in this setting and conjecture a combinatorial interpretation for the H-triangle. This conjecture is proved for m = 1.
引用
收藏
页码:437 / 468
页数:33
相关论文
共 50 条
  • [41] DECOMPOSITION NUMBERS FOR FINITE COXETER GROUPS AND GENERALISED NON-CROSSING PARTITIONS
    Krattenthaler, C.
    Mueller, T. W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (05) : 2723 - 2787
  • [42] On the Enumeration of Non-Crossing Pairings of Well-Balanced Binary Strings
    Schumacher, Paul R. F.
    Yan, Catherine H.
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 379 - 391
  • [43] Set partitions and non-crossing partitions with l-neighbors and l-isolated elements
    Benyi, Beata
    Mansour, Toufik
    Ramirez, Jose L.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 325 - 340
  • [44] On the Enumeration of Non-Crossing Pairings of Well-Balanced Binary Strings
    Paul R. F. Schumacher
    Catherine H. Yan
    Annals of Combinatorics, 2013, 17 : 379 - 391
  • [45] Comparison between the non-crossing and the non-crossing on lines properties
    Campbell, D.
    Pratelli, A.
    Radici, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [46] Multiplicative and semi-multiplicative functions on non-crossing partitions, and relations to cumulants
    Celestino, Adrian
    Ebrahimi-Fard, Kurusch
    Nica, Alexandru
    Perales, Daniel
    Witzman, Leon
    ADVANCES IN APPLIED MATHEMATICS, 2023, 145
  • [47] Products of free random variables and k-divisible non-crossing partitions
    Arizmendi, Octavio
    Vargas, Carlos
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17
  • [48] Some Connections Between Restricted Dyck Paths, Polyominoes, and Non-Crossing Partitions
    Florez, Rigoberto
    Ramirez, Jose L.
    Velandia, Fabio A.
    Villamizar, Diego
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 369 - 382
  • [49] Non-Crossing Tableaux
    Pavlo Pylyavskyy
    Annals of Combinatorics, 2009, 13 : 323 - 339
  • [50] Non-crossing matchings
    A. A. Vladimirov
    Problems of Information Transmission, 2013, 49 : 54 - 57