Pre-Training Methods for Question Reranking

被引:0
|
作者
Campese, Stefano [1 ,2 ]
Lauriola, Ivano [2 ]
Moschitti, Alessandro [2 ]
机构
[1] Univ Trento, Trento, Italy
[2] Amazon, Seattle, WA USA
关键词
D O I
暂无
中图分类号
学科分类号
摘要
One interesting approach to Question Answering (QA) is to search for semantically similar questions, which have been answered before. This task is different from answer retrieval as it focuses on questions rather than only on the answers, therefore it requires different model training on different data. In this work, we introduce a novel unsupervised pre-training method specialized for retrieving and ranking questions. This leverages (i) knowledge distillation from a basic question retrieval model, and (ii) new pre-training task and objective for learning to rank questions in terms of their relevance with the query. Our experiments show that (i) the proposed technique achieves state-of-the-art performance on QRC and Quora-match datasets, and (ii) the benefit of combining re-ranking and retrieval models.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [31] Code Question Answering via Task-Adaptive Sequence-to-Sequence Pre-training
    Yu, Tingrui
    Gu, Xiaodong
    Shen, Beijun
    2022 29TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC, 2022, : 229 - 238
  • [32] Pre-Training Without Natural Images
    Kataoka, Hirokatsu
    Okayasu, Kazushige
    Matsumoto, Asato
    Yamagata, Eisuke
    Yamada, Ryosuke
    Inoue, Nakamasa
    Nakamura, Akio
    Satoh, Yutaka
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (04) : 990 - 1007
  • [33] A Pipelined Pre-training Algorithm for DBNs
    Ma, Zhiqiang
    Li, Tuya
    Yang, Shuangtao
    Zhang, Li
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, CCL 2017, 2017, 10565 : 48 - 59
  • [34] Dialogue-oriented Pre-training
    Xu, Yi
    Zhao, Hai
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2663 - 2673
  • [35] Improving fault localization with pre-training
    Zhang, Zhuo
    Li, Ya
    Xue, Jianxin
    Mao, Xiaoguang
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (01)
  • [36] Robot Learning with Sensorimotor Pre-training
    Radosavovic, Ilija
    Shi, Baifeng
    Fu, Letian
    Goldberg, Ken
    Darrell, Trevor
    Malik, Jitendra
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [37] Simulated SAR for ATR pre-training
    Willis, Christopher J.
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS III, 2021, 11870
  • [38] Structural Pre-training for Dialogue Comprehension
    Zhang, Zhuosheng
    Zhao, Hai
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 5134 - 5145
  • [39] Structure-inducing pre-training
    McDermott, Matthew B. A.
    Yap, Brendan
    Szolovits, Peter
    Zitnik, Marinka
    NATURE MACHINE INTELLIGENCE, 2023, 5 (06) : 612 - +
  • [40] Pre-training Assessment Through the Web
    Kenneth Wong
    Reggie Kwan
    Jimmy SF Chan
    厦门大学学报(自然科学版), 2002, (S1) : 297 - 297