Lightweight distributed deep learning on compressive measurements for internet of things

被引:0
|
作者
Hu, Guiqiang [1 ,3 ]
Hu, Yong [1 ]
Wu, Tao [1 ,2 ,3 ]
Zhang, Yushu [4 ]
Yuan, Shuai [5 ]
机构
[1] Chongqing Water Resources & Elect Engn Coll, Sch Big Data, Chongqing 402160, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Cybersecur & Informat Law, Chongqing 400065, Peoples R China
[3] Chongqing Municipal Key Lab Cyberspace & Informat, Chongqing, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
关键词
Distributed deep learning; Compressive sensing; Chaotic system; Internet of things; RANDOM PROJECTIONS; LOW-OVERHEAD; SECURE;
D O I
10.1016/j.engappai.2024.109581
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we investigate the problem of distributed deep learning in Internet of Things (IoT). The proposed learning framework is constructed in a fog-cloud computing architecture, so as to overcome the limitation of resource constrained IoT end device. Compressive Sensing (CS) is used as a lightweight encryption in the framework to preserve the privacy of training data. Specifically, a chaotic-based CS measurement matrix construction mechanism is applied in the system to save the storage and transmission costs. With this design, the computation overhead of the learning framework in IoT can be successfully offloaded from IoT end device to the fog nodes. Theoretical analysis demonstrates that our system can guarantee security of the raw data against chosen plaintext attack (CPA). Experimental and analysis results show that our privacy- preserving proposal can significantly reduce the communication costs and computation costs with only a negligible accuracy penalty (with classification accuracy 91% testing on MNIST dataset under compression rate 0.5) compared to traditional non-private federated learning schemes. Notably, due to the chaotic-based CS measurement matrix construction mechanism, the memory requirement of end device side can be significantly reduced. This makes our framework be very suitable for the IoT applications in which end devices are equipped with low-spec chips.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Distributed Denial of Service Attack Detection for the Internet of Things Using Hybrid Deep Learning Model
    Ahmim, Ahmed
    Maazouzi, Faiz
    Ahmim, Marwa
    Namane, Sarra
    Dhaou, Imed Ben
    IEEE ACCESS, 2023, 11 : 119862 - 119875
  • [32] DIMA: Distributed cooperative microservice caching for internet of things in edge computing by deep reinforcement learning
    Tian, Hao
    Xu, Xiaolong
    Lin, Tingyu
    Cheng, Yong
    Qian, Cheng
    Ren, Lei
    Bilal, Muhammad
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (05): : 1769 - 1792
  • [33] Quantized Distributed Federated Learning for Industrial Internet of Things
    Ma, Teng
    Wang, Haibo
    Li, Chong
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 3027 - 3036
  • [34] Deep learning method for compressive strength prediction for lightweight concrete
    Nanehkaran, Yaser A.
    Azarafza, Mohammad
    Pusatli, Tolga
    Bonab, Masoud Hajialilue
    Irani, Arash Esmatkhah
    Kouhdarag, Mehdi
    Chen, Junde
    Derakhshani, Reza
    COMPUTERS AND CONCRETE, 2023, 32 (03): : 327 - 337
  • [35] Distributed Deep Convolutional Neural Networks for the Internet-of-Things
    Disabato, Simone
    Roveri, Manuel
    Alippi, Cesare
    IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (08) : 1239 - 1252
  • [36] A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things
    Almaiah, Mohammed Amin
    Ali, Aitizaz
    Hajjej, Fahima
    Pasha, Muhammad Fermi
    Alohali, Manal Abdullah
    SENSORS, 2022, 22 (06)
  • [37] Editorial: Deep Learning and Edge Computing for Internet of Things
    Wan, Shaohua
    Wu, Yirui
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [38] Deep Learning Framework For Internet Of Things For People With Disabilities
    Shah, Syed Jawad Hussain
    Albishri, Ahmed Awad
    Lee, Yugyung
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3609 - 3614
  • [39] Internet of Things Intrusion Detection: A Deep Learning Approach
    Dawoud, Ahmed
    Sianaki, Omid Ameri
    Shahristani, Seyed
    Raun, Chun
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1516 - 1522
  • [40] Deep Reinforcement Learning for Internet of Things: A Comprehensive Survey
    Chen, Wuhui
    Qiu, Xiaoyu
    Cai, Ting
    Dai, Hong-Ning
    Zheng, Zibin
    Zhang, Yan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03): : 1659 - 1692