Lightweight distributed deep learning on compressive measurements for internet of things

被引:0
|
作者
Hu, Guiqiang [1 ,3 ]
Hu, Yong [1 ]
Wu, Tao [1 ,2 ,3 ]
Zhang, Yushu [4 ]
Yuan, Shuai [5 ]
机构
[1] Chongqing Water Resources & Elect Engn Coll, Sch Big Data, Chongqing 402160, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Cybersecur & Informat Law, Chongqing 400065, Peoples R China
[3] Chongqing Municipal Key Lab Cyberspace & Informat, Chongqing, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
关键词
Distributed deep learning; Compressive sensing; Chaotic system; Internet of things; RANDOM PROJECTIONS; LOW-OVERHEAD; SECURE;
D O I
10.1016/j.engappai.2024.109581
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we investigate the problem of distributed deep learning in Internet of Things (IoT). The proposed learning framework is constructed in a fog-cloud computing architecture, so as to overcome the limitation of resource constrained IoT end device. Compressive Sensing (CS) is used as a lightweight encryption in the framework to preserve the privacy of training data. Specifically, a chaotic-based CS measurement matrix construction mechanism is applied in the system to save the storage and transmission costs. With this design, the computation overhead of the learning framework in IoT can be successfully offloaded from IoT end device to the fog nodes. Theoretical analysis demonstrates that our system can guarantee security of the raw data against chosen plaintext attack (CPA). Experimental and analysis results show that our privacy- preserving proposal can significantly reduce the communication costs and computation costs with only a negligible accuracy penalty (with classification accuracy 91% testing on MNIST dataset under compression rate 0.5) compared to traditional non-private federated learning schemes. Notably, due to the chaotic-based CS measurement matrix construction mechanism, the memory requirement of end device side can be significantly reduced. This makes our framework be very suitable for the IoT applications in which end devices are equipped with low-spec chips.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Detecting Internet of Things attacks using distributed deep learning
    Parra, Gonzalo De La Torre
    Rad, Paul
    Choo, Kim-Kwang Raymond
    Beebe, Nicole
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 163 (163)
  • [2] A lightweight deep learning architecture for automatic modulation classification of wireless internet of things
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    IET COMMUNICATIONS, 2024, 18 (18) : 1220 - 1230
  • [3] Deep Learning for the Internet of Things
    Yao, Shuochao
    Zhao, Yiran
    Zhang, Aston
    Hu, Shaohan
    Shao, Huajie
    Zhang, Chao
    Su, Lu
    Abdelzaher, Tarek
    COMPUTER, 2018, 51 (05) : 32 - 41
  • [4] A Study of Distributed Compressive Sensing for the Internet of Things (IoT)
    Shaban, Mohamed
    Abdelgawad, Ahmed
    2018 IEEE 4TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2018, : 173 - 178
  • [5] Development of lightweight intrusion model in Industrial Internet of Things using deep learning technique
    Sinha, Raj
    Thakur, Padmanabh
    Gupta, Sandeep
    Shukla, Anand
    DISCOVER APPLIED SCIENCES, 2024, 6 (07)
  • [6] Distributed attack detection scheme using deep learning approach for Internet of Things
    Diro, Abebe Abeshu
    Chilamkurti, Naveen
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 82 : 761 - 768
  • [7] HETEROGENEOUS DISTRIBUTED SHARED MEMORY FOR LIGHTWEIGHT INTERNET OF THINGS DEVICES
    Kim, Bongjun
    Heo, Seonyeong
    Lee, Gyeongmin
    Park, Soyeon
    Kim, Hanjun
    Kim, Jong
    IEEE MICRO, 2016, 36 (06) : 16 - 24
  • [8] WebletScript: A Lightweight Distributed Java']JavaScript Engine for Internet of Things
    Li, Dong
    Huang, Bin
    Cui, Li
    Xu, Zhiwei
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [9] Lightweight Distributed Attack Detection and Prevention for the Safe Internet of Things
    Eliseev, Vladimir
    Eliseeva, Olga
    2018 INTERNATIONAL CONFERENCE ON CYBER SECURITY AND PROTECTION OF DIGITAL SERVICES (CYBER SECURITY), 2018,
  • [10] Deep Learning in Security of Internet of Things
    Li, Yuxi
    Zuo, Yue
    Song, Houbing
    Lv, Zhihan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (22) : 22133 - 22146