A Hybrid Deep Learning Approach for Skin Lesion Segmentation With Dual Encoders and Channel-Wise Attention

被引:0
|
作者
Ahmed, Asaad [1 ]
Sun, Guangmin [1 ]
Bilal, Anas [2 ]
Li, Yu [1 ]
Ebad, Shouki A. [3 ]
机构
[1] Beijing Univ Technol, Sch Informat Sci & Technol, Beijing 100124, Peoples R China
[2] Hainan Normal Univ, Coll Informat Sci & Technol, Haikou 571158, Peoples R China
[3] Northern Border Univ, Ctr Sci Res & Entrepreneurship, Ar Ar 73213, Saudi Arabia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Image segmentation; Feature extraction; Skin; Lesions; Transformers; Accuracy; Computational modeling; Image color analysis; Decoding; Computer vision; Convolutional neural networks; dual encoder fusion; skin lesion segmentation; squeeze and excitation attention; Vision Transformer; CLASSIFICATION;
D O I
10.1109/ACCESS.2025.3548135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Skin cancer poses a significant global health challenge due to its increasing incidence rates. Accurate segmentation of skin lesions is essential for early detection and successful treatment, yet many current techniques struggle to balance computational efficiency with the ability to capture complex lesion features. This paper aims to develop an advanced deep learning model that improves segmentation accuracy while maintaining computational efficiency, offering a solution to the limitations of existing methods. We propose a novel dual-encoder deep learning architecture incorporating Squeeze-and-Excitation (SE) attention blocks. The model integrates two encoders: a pre-trained ResNet-50 for extracting local features efficiently and a Vision Transformer (ViT) to capture high-level features and long-range dependencies. The fusion of these features, enhanced by SE attention blocks, is processed through a CNN decoder, ensuring the model captures both local and global contextual information. The proposed model was evaluated on three benchmark datasets, ISIC 2016, ISIC 2017, and ISIC 2018, achieving Intersection over Union (IoU) scores of 89.53%, 87.02%, and 84.56%, respectively. These results highlight the model's ability to outperform current methods in balancing segmentation accuracy and computational efficiency. The findings demonstrate that the proposed model enhances medical image analysis in dermatology, providing a promising tool for improving the early detection of skin cancer.
引用
收藏
页码:42608 / 42621
页数:14
相关论文
共 50 条
  • [21] SkinNet: A Deep Learning Framework for Skin Lesion Segmentation
    Vesal, Sulaiman
    Ravikumar, Nishant
    Maier, Andreas
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [22] SkinNet: A deep learning framework for skin lesion segmentation
    Vesal, Sulaiman
    Ravikumar, Nishant
    Maier, Andreas
    arXiv, 2018,
  • [23] Skin Lesion Segmentation by using Deep Learning Techniques
    Hasan, Sohaib Najat
    Gezer, Murat
    Azeez, Raghad Abdulaali
    Gulsecen, Sevinc
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 192 - 195
  • [24] Deep Convolutional Pixel-wise Labeling for Skin Lesion Image Segmentation
    Youssef, Ali
    Bloisi, Domenico D.
    Muscio, Mario
    Pennisi, Andrea
    Nardi, Daniele
    Facchiano, Antonio
    2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 536 - 541
  • [25] Bi-Modal Learning With Channel-Wise Attention for Multi-Label Image Classification
    Li, Peng
    Chen, Peng
    Xie, Yonghong
    Zhang, Dezheng
    IEEE ACCESS, 2020, 8 : 9965 - 9977
  • [26] ICENET: A Semantic Segmentation Deep Network for River Ice by Fusing Positional and Channel-Wise Attentive Features
    Zhang, Xiuwei
    Jin, Jiaojiao
    Lan, Zeze
    Li, Chunjiang
    Fan, Minhao
    Wang, Yafei
    Yu, Xin
    Zhang, Yanning
    REMOTE SENSING, 2020, 12 (02)
  • [27] Automated Skin Lesion Segmentation Via an Adaptive Dual Attention Module
    Wu, Huisi
    Pan, Junquan
    Li, Zhuoying
    Wen, Zhenkun
    Qin, Jing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) : 357 - 370
  • [28] Optimized deep learning for skin lesion segmentation and skin cancer detection
    Babu, Rachana R.
    Philip, Felix M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [29] HGLeNet DEEP LEARNING FOR SKIN CANCER DETECTION WITH SKIN LESION SEGMENTATION
    Mariappan, Suguna
    Moses, Diana
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024,
  • [30] Fake Colorized Image Detection with Channel-wise Convolution based Deep-learning Framework
    Zhuo, Long
    Tan, Shunquan
    Zeng, Jishen
    Li, Bin
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 733 - 736