Parameter estimation of protoneutron stars from gravitational wave signals using the Hilbert-Huang transform

被引:0
|
作者
Sasaoka, Seiya [1 ]
Sakai, Yusuke [2 ,3 ]
Dominguez, Diego [4 ]
Somiya, Kentaro [4 ]
Sakai, Kazuki [5 ]
Oohara, Ken-ichi [6 ,7 ]
Meyer-Conde, Marco [2 ,3 ,8 ]
Takahashi, Hirotaka [2 ,3 ,9 ,10 ]
机构
[1] Tokyo Inst Technol, Dept Phys, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528551, Japan
[2] Tokyo City Univ, Dept Design & Data Sci, Adv Res Labs, 3-3-1 Ushikubo Nishi,Tsuzuki ku, Yokohama, Kanagawa 2248551, Japan
[3] Tokyo City Univ, Res Ctr Space Sci, Adv Res Labs, 3-3-1 Ushikubo Nishi,Tsuzuki ku, Yokohama, Kanagawa 2248551, Japan
[4] Inst Sci Tokyo, Sch Sci, Dept Phys, 2-12-1 Ookayama,Meguro ku, Tokyo 1528551, Japan
[5] Nagaoka Coll, Natl Inst Technol, Dept Elect Control Engn, 888 Nishikatakai, Nagaoka, Niigata 9408532, Japan
[6] Niigata Univ, Grad Sch Sci & Technol, 8050 Ikarashi-2-no-cho,Nishi Ku, Niigata 9502181, Japan
[7] Open Univ Japan, Niigata Study Ctr, 754 Ichibancho,Chuo ku, Niigata 9518122, Japan
[8] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[9] Univ Tokyo, Inst Cosm Ray Res ICRR, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 2778582, Japan
[10] Univ Tokyo, Earthquake Res Inst, 1-1-1 Yayoi,Bunkyo ku, Tokyo 1130032, Japan
关键词
ROTATING BLACK-HOLE; QUANTUM-GRAVITY; PERTURBATIONS; STABILITY; EMPIRICAL MODE DECOMPOSITION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Core-collapse supernovae (CCSNe) are potential multimessenger events detectable by current and future gravitational wave (GW) detectors. The GW signals emitted during these events are expected to provide insights into the explosion mechanism and the internal structures of neutron stars. In recent years, several studies have empirically derived the relationship between the frequencies of the GW signals originating from the oscillations of protoneutron stars (PNSs) and the physical parameters of these stars. This study applies the Hilbert-Huang transform (HHT) [Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. A 454, 903 (1998)] to extract the frequencies of these modes to infer the physical properties of the PNSs. The results exhibit comparable accuracy to a short-time Fourier transform-based estimation, highlighting the potential of this approach as a complementary method for extracting physical information from GW signals of CCSNe.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Classification of spring strain signals for road classes using Hilbert-Huang transform
    Kong, Y. S.
    Abdullah, S.
    Singh, S. S. K.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (03)
  • [22] Effect of Hilbert-Huang transform on classification of PCG signals using machine learning
    Arslan, Ozkan
    Karhan, Mustafa
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9915 - 9925
  • [23] Research on improved modal parameter identification method using Hilbert-Huang transform
    Zhang, Mingjin
    Chen, Hongyu
    Yan, Tingyuan
    Sun, Hao
    Wu, Lianhuo
    MEASUREMENT & CONTROL, 2023, 56 (9-10): : 1637 - 1648
  • [24] Seizure classification in EEG signals utilizing Hilbert-Huang transform
    Oweis, Rami J.
    Abdulhay, Enas W.
    BIOMEDICAL ENGINEERING ONLINE, 2011, 10
  • [25] Seizure classification in EEG signals utilizing Hilbert-Huang transform
    Rami J Oweis
    Enas W Abdulhay
    BioMedical Engineering OnLine, 10
  • [26] FM Signal Parameter Estimation Using the Hilbert Huang Transform
    Chen, Hao
    Guo, Jun-hai
    Liu, Tong
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 1246 - 1250
  • [27] Parameter identification of synchronous machine based on Hilbert-Huang transform
    Electrical Engineering Institute, Northeast China Dianli University, Jilin 132012, China
    不详
    不详
    Zhongguo Dianji Gongcheng Xuebao, 2006, 8 (153-158):
  • [28] Time-Frequency Analysis of Electroencephalograph Signals Using the Hilbert-Huang Transform
    Tychkov, A. Yu
    BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA, 2019, 53 (02): : 102 - 107
  • [29] Time and Frequency Patterns Identification of sEMG Signals Using Hilbert-Huang Transform
    Altamirano, A.
    Vera, A.
    Munoz, R.
    Leija, L.
    Wolf, D.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (10) : 1881 - 1887
  • [30] Detecting Multipath Signals using the Hilbert-Huang Transform in Microwave Breast Imaging
    Price, Sarah
    Fear, Elise C.
    2024 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE, IMBIOC 2024, 2024, : 51 - 53