Local Well-Posedness to the Magneto-Micropolar Boundary Layer Equations in Gevrey Space

被引:0
|
作者
Tan, Zhong [1 ]
Zhang, Mingxue [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
energy method; Gevrey class; magneto-micropolar boundary layer; well-posedness theory; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; HALF-SPACE; PRANDTL;
D O I
10.1002/mma.10637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundary layer equations for two-dimensional magneto-micropolar boundary layer system and establish the existence and uniqueness of solutions in the Gevrey function space without any structural assumption, with Gevrey index sigma is an element of(1,32]$$ \sigma \in \left(1,\frac{3}{2}\right] $$. Inspired by the abstract Cauchy-Kovalevskaya theorem, our proof is based on a new cancellation mechanism in the system to overcome the difficulties caused by the loss of derivatives. Our results improve the classical local well-posedness results presented in a previous study, specifically for cases where the initial data are analytic in the x$$ x $$-variable.
引用
收藏
页码:5790 / 5802
页数:13
相关论文
共 50 条
  • [1] Well-posedness for the hyperviscous magneto-micropolar equations
    Liu, Hui
    Sun, Chengfeng
    Xin, Jie
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [2] THE LOCAL WELL-POSEDNESS OF 2D MAGNETO-MICROPOLAR BOUNDARY LAYER EQUATIONS WITHOUT RESISTIVITY
    Tan, Zhong
    Zhang, Mingxue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (02) : 228 - 254
  • [3] Local well-posedness for 2D incompressible magneto-micropolar boundary layer system
    Lin, Xueyun
    Zhang, Ting
    APPLICABLE ANALYSIS, 2021, 100 (01) : 206 - 227
  • [4] Global Well-Posedness of Compressible Magneto-micropolar Fluid Equations
    Jia, Cuiman
    Tan, Zhong
    Zhou, Jianfeng
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (11)
  • [5] Global Well-Posedness of Compressible Magneto-micropolar Fluid Equations
    Cuiman Jia
    Zhong Tan
    Jianfeng Zhou
    The Journal of Geometric Analysis, 2023, 33
  • [6] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Jishan Fan
    Zhaoyun Zhang
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [7] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Fan, Jishan
    Zhang, Zhaoyun
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [8] Global well-posedness for n-dimensional magneto-micropolar equations with hyperdissipation
    Deng, Lihua
    Shang, Haifeng
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [9] Global well-posedness of the 3D magneto-micropolar equations with damping
    Liu, Hui
    Sun, Chengfeng
    Meng, Fanwei
    APPLIED MATHEMATICS LETTERS, 2019, 94 (38-43) : 38 - 43
  • [10] Local well-posedness and regularity criterion for nonhomogeneous magneto-micropolar fluid equations without angular viscosity
    Fan, Jishan
    Zhong, Xin
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 20 (03) : 197 - 212