A Network Traffic Prediction Model Based on Layered Training Graph Convolutional Network

被引:0
|
作者
Li, Yulian [1 ]
Su, Yang [1 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian 710054, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Gated recurrent unit; graph convolutional network; space-correlated features; time-correlated features; traffic prediction;
D O I
10.1109/ACCESS.2025.3538265
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Routing deployment and resource scheduling in communication networks require accurate traffic prediction. Neural network-based models that extract the time-correlated or space-correlated features of traffic flow have been developed for traffic prediction. The conventional model that extracts space-correlated features of traffic flow have the problem of high computational complexity and long training time which limits the model's application on rapid routing deployment. This paper therefore proposes a layered training graph convolutional network (LT-GCN) to decrease the training time greatly with the nearly same prediction accuracy as graph convolutional network (GCN). Instead of training on parameters in all hidden layers simultaneously, LT-GCN develops a new layer-by-layer training pattern for multiple hidden layers to degrade the computational complexity in training process. LT-GCN is then further integrated with gated recurrent unit (GRU) that is called LTGG model to achieve the joint extraction of time-correlated and space-correlated features of traffic flow for more accurate prediction. Experimental results demonstrate that LT-GCN outperforms the classical GCN model on training time and LTGG exhibits greater performance than other benchmark models on prediction accuracy.
引用
收藏
页码:24398 / 24410
页数:13
相关论文
共 50 条
  • [31] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [32] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225
  • [33] Traffic Prediction Based on Multi-graph Spatio-Temporal Convolutional Network
    Yao, Xiaomin
    Zhang, Zhenguo
    Cui, Rongyi
    Zhao, Yahui
    WEB INFORMATION SYSTEMS AND APPLICATIONS (WISA 2021), 2021, 12999 : 144 - 155
  • [34] Attention-based Bicomponent Synchronous Graph Convolutional Network for traffic flow prediction
    Shen, Cheng
    Han, Kai
    Bi, Tianyuan
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 778 - 785
  • [35] Topological Graph Convolutional Network-Based Urban Traffic Flow and Density Prediction
    Qiu, Han
    Zheng, Qinkai
    Msahli, Mounira
    Memmi, Gerard
    Qiu, Meikang
    Lu, Jialiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4560 - 4569
  • [36] GECRAN: Graph embedding based convolutional recurrent attention network for traffic flow prediction
    Yan, Jianqiang
    Zhang, Lin
    Gao, Yuan
    Qu, Boting
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [37] A Graph Convolutional Neural Network Model for Trajectory Prediction
    Di, Zichao
    Zhou, Yue
    Chen, Kun
    Chen, Zongzhi
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [38] Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction
    Xu, Yuanbo
    Cai, Xiao
    Wang, En
    Liu, Wenbin
    Yang, Yongjian
    Yang, Funing
    INFORMATION SCIENCES, 2023, 621 : 580 - 595
  • [39] TAGTN: Traffic Prediction Model based on Adaptive Graph Transformer Network
    Zheng, Zhedian
    Sun, Wei
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 352 - 357
  • [40] A Freeway Traffic Flow Prediction Model Based on a Generalized Dynamic Spatio-Temporal Graph Convolutional Network
    Gan, Rui
    An, Bocheng
    Li, Linheng
    Qu, Xu
    Ran, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13682 - 13693