Online ensemble learning-based anomaly detection for IoT systems

被引:0
|
作者
Wu, Yafeng [1 ]
Liu, Lan [1 ]
Yu, Yongjie [1 ]
Chen, Guiming [1 ]
Hu, Junhan [1 ]
机构
[1] Guangdong Polytech Normal Univ, Guangzhou, Peoples R China
关键词
Anomaly detection; Ensemble learning; Particle Swarm Optimization; IoT system; Online learning;
D O I
10.1016/j.asoc.2025.112931
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the modern era of digital transformation, the evolution of fifth-generation (5G) wireless networks has played a pivotal role in revolutionizing communication technology and accelerating the growth of smart technology applications. As an integral element of smart technology, the Internet of Things (IoT) grapples with the problem of limited hardware performance. Cloud and fog computing-based IoT systems offer an effective solution but often encounter concept drift issues in real-time data processing due to the dynamic and imbalanced nature of IoT environments, leading to performance degradation. In this study, we propose a novel framework for drift- adaptive ensemble learning called the Adaptive Exponentially Weighted Average Ensemble (AEWAE), which consists of three stages: IoT data preprocessing, base model learning, and online ensembling. It integrates four advanced online learning methods within an ensemble approach. The crucial parameter of the AEWAE method is fine-tuned using the Particle Swarm Optimization (PSO) technique. Experimental results on four public datasets demonstrate that AEWAE-based anomaly detection effectively detects concept drift and identifies anomalies in imbalanced IoT data streams, outperforming other baseline methods in terms of accuracy, F1 score, false alarm rate (FAR), and latency.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Enhancing cloud security: A study on ensemble learning-based intrusion detection systems
    Al-Sharif, Maha
    Bushnag, Anas
    IET COMMUNICATIONS, 2024, 18 (16) : 950 - 965
  • [22] ENIDS: A Deep Learning-Based Ensemble Framework for Network Intrusion Detection Systems
    Sayem, Ibrahim Mohammed
    Sayed, Moinul Islam
    Saha, Sajal
    Haque, Anwar
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5809 - 5825
  • [23] Effective Anomaly Detection Using Deep Learning in IoT Systems
    Aversano L.
    Bernardi M.L.
    Cimitile M.
    Pecori R.
    Veltri L.
    Wireless Communications and Mobile Computing, 2021, 2021
  • [24] Deep learning-enabled anomaly detection for IoT systems
    Abusitta, Adel
    de Carvalho, Glaucio H. S.
    Wahab, Omar Abdel
    Halabi, Talal
    Fung, Benjamin C. M.
    Al Mamoori, Saja
    INTERNET OF THINGS, 2023, 21
  • [25] Instantaneous anomaly detection in online learning fuzzy systems
    Brockmann, Werner
    Rosemann, Nils
    2008 3RD INTERNATIONAL WORKSHOP ON GENETIC AND EVOLVING FUZZY SYSTEMS, 2008, : 21 - 26
  • [26] Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework
    Ruyue Xin
    Hongyun Liu
    Peng Chen
    Zhiming Zhao
    Journal of Cloud Computing, 12
  • [27] Ensemble learning-based IDS for sensors telemetry data in IoT networks
    Naz, Naila
    Khan, Muazzam A.
    Alsuhibany, Suliman A.
    Diyan, Muhammad
    Tan, Zhiyuan
    Khan, Muhammad Almas
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (10) : 10550 - 10580
  • [28] Online diagnosis for bridge monitoring data via a machine learning-based anomaly detection method
    Wang, Lei
    Kang, Juntao
    Zhang, Wenbin
    Hu, Jun
    Wang, Kai
    Wang, Dong
    Yu, Zechuan
    MEASUREMENT, 2025, 245
  • [29] Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework
    Xin, Ruyue
    Liu, Hongyun
    Chen, Peng
    Zhao, Zhiming
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2023, 12 (01):
  • [30] Enhancing trustworthiness among iot network nodes with ensemble deep learning-based cyber attack detection
    Malathi, S.
    Begum, S. Razool
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255