Multi-Domain Time-Frequency Fusion Feature Contrastive Learning for Machinery Fault Diagnosis

被引:0
|
作者
Wei, Yang [1 ,2 ]
Wang, Kai [1 ,2 ]
机构
[1] Sichuan Univ, Sch Mech Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Electromech Equipment & Prod Innovat Design Key La, Chengdu 610065, Peoples R China
关键词
Time-frequency analysis; Convolution; Feature extraction; Kernel; Fault diagnosis; Time-domain analysis; Contrastive learning; Training; Optical wavelength conversion; Signal resolution; contrastive learning; time-frequency consistency; feature representations; AUTOENCODER; NETWORK;
D O I
10.1109/LSP.2025.3548466
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scarcity of a large amount of labeled data for adequately training of deep learning models, along with their restricted generalization capabilities, persistently hinders the real-world practical application of data-driven deep learning in few-shot fault diagnosis and transfer task fault diagnosis. This paper proposes a self-supervised Wide Kernel Time-Frequency Fusion (WTFF) contrastive learning method that leverages extensive unlabeled signals to extract discriminative time-frequency fusion features, thereby enhancing fault diagnosis performance even with a limited number of labeled samples. Moreover, the WTFF integrates a multi-layer time-frequency wide convolutional neural network (TFCNN) encoder with a novel local and global time-frequency contrastive loss (LGTFCL) to capture time frequency consistency by facilitating the alignment of time-domain and frequency-domain feature embeddings across the shallow and deep network layers. In the fine-tuning phase, time frequency features across various levels learned from transferred pretrained model are fused to extract signal characteristics that exhibit both time and frequency discrimination. The proposed method demonstrates superior diagnostic accuracy and robustness in experiments involving few-shot and transfer learning-based fault diagnosis.
引用
收藏
页码:1116 / 1120
页数:5
相关论文
共 50 条
  • [31] Bearing Fault Diagnosis Method Based on Multi-Domain Feature Selection and the Fuzzy Broad Learning System
    Wu, Le
    Zhang, Chao
    Qin, Feifan
    Fei, Hongbo
    Liu, Guiyi
    Zhang, Jing
    Xu, Shuai
    PROCESSES, 2024, 12 (02)
  • [32] A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery
    Zhang, Dong
    Zhang, Lili
    MEASUREMENT, 2022, 200
  • [33] COMPOSITE FAULT DIAGNOSIS IN ROTATING MACHINERY BASED ON MULTI-FEATURE FUSION
    Su, Nai-quan
    Zhang, Qing-hua
    Chen, Yi-dian
    Chang, Xiao-xiao
    Liu, Yang
    TRANSACTIONS OF FAMENA, 2024, 48 (01) : 87 - 96
  • [34] A trackable multi-domain collaborative generative adversarial network for rotating machinery fault diagnosis
    Wang, Xin
    Jiang, Hongkai
    Mu, Mingzhe
    Dong, Yutong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [35] Research on Emotion Recognition Based on EEG Time-Frequency-Spatial Multi-Domain Feature Fusion
    Wang, Lu
    Liang, Mingjing
    Shi, Huiyu
    Wen, Xin
    Cao, Rui
    Computer Engineering and Applications, 2024, 59 (04) : 191 - 196
  • [36] Fusion of Time-Frequency Features in Contrastive Learning for Shipboard Wind Speed Correction
    Song, Jian
    Huang, Meng
    Li, Xiang
    Zhang, Zhenqiang
    Wang, Chunxiao
    Zhao, Zhigang
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2025, 24 (02) : 377 - 386
  • [37] Fault diagnosis of planetary gearbox based on deep learning with time-frequency fusion and attention mechanism
    Kong Z.
    Deng L.
    Tang B.
    Han Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (06): : 221 - 227
  • [38] Fusion of Time-Frequency Features in Contrastive Learning for Shipboard Wind Speed Correction
    SONG Jian
    HUANG Meng
    LI Xiang
    ZHANG Zhenqiang
    WANG Chunxiao
    ZHAO Zhigang
    Journal of Ocean University of China, 2025, 24 (02) : 377 - 386
  • [39] STATOR-ROTOR FAULT DIAGNOSIS OF INDUCTION MOTOR BASED ON TIME-FREQUENCY DOMAIN FEATURE EXTRACTION
    Yi, Lingzhi
    Long, Jiao
    Wang, Yahui
    Sun, Tao
    Huang, Jianxiong
    Huang, Yi
    METROLOGY AND MEASUREMENT SYSTEMS, 2023, 30 (04) : 773 - 790
  • [40] Multisensor Fusion Time-Frequency Analysis of Thruster Blade Fault Diagnosis Based on Deep Learning
    Tsai, Chia-Ming
    Wang, Chiao-Sheng
    Chung, Yu-Jen
    Sun, Yung-Da
    Perng, Jau-Woei
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19761 - 19771