Multi-Domain Time-Frequency Fusion Feature Contrastive Learning for Machinery Fault Diagnosis

被引:0
|
作者
Wei, Yang [1 ,2 ]
Wang, Kai [1 ,2 ]
机构
[1] Sichuan Univ, Sch Mech Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Electromech Equipment & Prod Innovat Design Key La, Chengdu 610065, Peoples R China
关键词
Time-frequency analysis; Convolution; Feature extraction; Kernel; Fault diagnosis; Time-domain analysis; Contrastive learning; Training; Optical wavelength conversion; Signal resolution; contrastive learning; time-frequency consistency; feature representations; AUTOENCODER; NETWORK;
D O I
10.1109/LSP.2025.3548466
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scarcity of a large amount of labeled data for adequately training of deep learning models, along with their restricted generalization capabilities, persistently hinders the real-world practical application of data-driven deep learning in few-shot fault diagnosis and transfer task fault diagnosis. This paper proposes a self-supervised Wide Kernel Time-Frequency Fusion (WTFF) contrastive learning method that leverages extensive unlabeled signals to extract discriminative time-frequency fusion features, thereby enhancing fault diagnosis performance even with a limited number of labeled samples. Moreover, the WTFF integrates a multi-layer time-frequency wide convolutional neural network (TFCNN) encoder with a novel local and global time-frequency contrastive loss (LGTFCL) to capture time frequency consistency by facilitating the alignment of time-domain and frequency-domain feature embeddings across the shallow and deep network layers. In the fine-tuning phase, time frequency features across various levels learned from transferred pretrained model are fused to extract signal characteristics that exhibit both time and frequency discrimination. The proposed method demonstrates superior diagnostic accuracy and robustness in experiments involving few-shot and transfer learning-based fault diagnosis.
引用
收藏
页码:1116 / 1120
页数:5
相关论文
共 50 条
  • [1] Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis
    He, Qingbo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 35 (1-2) : 200 - 218
  • [2] Fault diagnosis of rotating machinery based on time-frequency image feature extraction
    Zhang, Shiyi
    Zhang, Laigang
    Zhao, Teng
    Mahmoud Mohamed Selim
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 5193 - 5200
  • [3] Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning
    Xu, Qifa
    Lu, Shixiang
    Jia, Weiyin
    Jiang, Cuixia
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (06) : 1467 - 1481
  • [4] Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning
    Qifa Xu
    Shixiang Lu
    Weiyin Jia
    Cuixia Jiang
    Journal of Intelligent Manufacturing, 2020, 31 : 1467 - 1481
  • [5] Fault diagnosis method of time domain and time-frequency domain based on information fusion
    ZhaoJiang
    WangJiao
    ShangMeng
    MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 : 635 - 639
  • [6] Fault diagnosis of blade crack based on multi-domain feature and information fusion
    Ma, Tianchi
    Shen, Junxian
    Song, Di
    Xu, Feiyun
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2024, 54 (06): : 1567 - 1573
  • [7] Multilevel feature fusion of multi-domain vibration signals for bearing fault diagnosis
    Li, Hui
    Wang, Daichao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 99 - 108
  • [8] Multilevel feature fusion of multi-domain vibration signals for bearing fault diagnosis
    Hui Li
    Daichao Wang
    Signal, Image and Video Processing, 2024, 18 : 99 - 108
  • [9] Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis
    Ding, Xiaoxi
    Li, Quanchang
    Lin, Lun
    He, Qingbo
    Shao, Yimin
    MEASUREMENT, 2019, 141 : 380 - 395
  • [10] A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
    Attaran, B.
    Ghanbarzadeh, A.
    Moradi, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 668 - 675