Improvement of SAR Target Classification Using GAN-based Data Augmentation and Wavelet Transformation

被引:0
|
作者
Batt, Jacob P. [1 ]
Blatchford, Colton C. [1 ]
Coolidge, Isaac P. [1 ]
Cruz, Kevin E. [1 ]
Drumm, Glen R. [1 ]
Feze, Daniel F. [1 ]
Flynn, Daniel T. [1 ]
Gallagher, Mark A. [1 ]
Ghanem, Norma [1 ]
Hancock, Alexander J. [1 ]
Harms, Rhett C. [1 ]
Johnson, Brian T. [1 ]
Maestas, Michael M. [1 ]
McCormick, Connor P. [1 ]
Milner, Matthew J. [1 ]
Robinson, Adrian T. [1 ]
Schrank, Alec B. [1 ]
机构
[1] US Air Force, Inst Technol, Wright Patterson AFB, OH 45433 USA
关键词
RECOGNITION;
D O I
10.5711/1082598329391
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Synthetic aperture radar (SAR) is a powerful tool in remote sensing. Unlike optical image devices, SAR can observe target regions regardless of weather conditions, such as clouds, fog, and darkness. In this article, we con-sider the SAR target classification problems when avail-able SAR images having target labels are limited. To improve the classification performance, we propose a learning technique combining data augmentation using generative adversarial network (GAN) models and wave-let transformation. We conduct experiments to investigate the improvement of the proposed learning technique with the SAR images from the moving and stationary target acquisition and recognition data. From our experiment results, the proposed learning technique combining GAN-based data augmentation and wavelet transformation has shown greater improvement in SAR image classification when the available learning data is scarce
引用
收藏
页数:128
相关论文
共 50 条
  • [21] RETRACTION: An Improved COVID-19 Detection using GAN-Based Data Augmentation and Novel QuNet-Based Classification
    Asghar, U.
    Arif, M.
    Ejaz, K.
    Vicoveanu, D.
    Izdrui, D.
    Geman, O.
    BIOMED RESEARCH INTERNATIONAL, 2023, 2023
  • [22] Enhancing Data Discretization for Smoother Drone Input Using GAN-Based IMU Data Augmentation
    Petrenko, Dmytro
    Kryvenchuk, Yurii
    Yakovyna, Vitaliy
    DRONES, 2023, 7 (07)
  • [23] GAN-Based Data Augmentation for Visual Finger Spelling Recognition
    Kwolek, Bogdan
    ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041
  • [24] A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition
    Luo, Yun
    Zhu, Li-Zhen
    Lu, Bao-Liang
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 141 - 150
  • [25] GAN-based data augmentation for transcriptomics: survey and comparative assessment
    Lacan, Alice
    Sebag, Michele
    Hanczar, Blaise
    BIOINFORMATICS, 2023, 39 : I111 - I120
  • [26] GAN-based data augmentation for semantic segmentation in multiple weathers
    Nakashima K.
    Satoh Y.
    Kataoka H.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (01): : 107 - 113
  • [27] AugGAN: Cross Domain Adaptation with GAN-Based Data Augmentation
    Huang, Sheng-Wei
    Lin, Che-Tsung
    Chen, Shu-Ping
    Wu, Yen-Yi
    Hsu, Po-Hao
    Lai, Shang-Hong
    COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 : 731 - 744
  • [28] Enhancing human action recognition with GAN-based data augmentation
    Pulakurthi, Prasanna Reddy
    de Melo, Celso M.
    Rao, Raghuveer
    Rabbani, Majid
    SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [29] GAN-based data augmentation for transcriptomics: survey and comparative assessment
    Lacan, Alice
    Sebag, Michele
    Hanczar, Blaise
    BIOINFORMATICS, 2023, 39 : i111 - i120
  • [30] LEGAN: Addressing Intraclass Imbalance in GAN-Based Medical Image Augmentation for Improved Imbalanced Data Classification
    Ding, Hongwei
    Huang, Nana
    Wu, Yaoxin
    Cui, Xiaohui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14