Genome-coverage single-cell histone modifications for embryo lineage tracing

被引:0
|
作者
Liu, Min [1 ,2 ,3 ]
Yue, Yanzhu [4 ]
Chen, Xubin [1 ,2 ,3 ]
Xian, Kexin [1 ,2 ,3 ]
Dong, Chao [1 ,2 ,3 ]
Shi, Ming [1 ,2 ,3 ]
Xiong, Haiqing [5 ]
Tian, Kang [6 ,7 ,8 ]
Li, Yuzhe [6 ,7 ,9 ]
Zhang, Qiangfeng Cliff [6 ,7 ,8 ]
He, Aibin [1 ,2 ,3 ,10 ,11 ]
机构
[1] Peking Univ, Inst Mol Med, Coll Future Technol, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[2] Peking Univ, Coll Future Technol, Natl Biomed Imaging Ctr, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[3] Peking Univ, State Key Lab Gene Funct & Modulat Res, Beijing, Peoples R China
[4] Jilin Univ, Jilin Prov Clin Res Ctr Birth Defect & Rare Dis, Dept Cell Fate & Dis, Jilin Prov Key Lab Womens Reprod Hlth,Hosp 1, Changchun, Peoples R China
[5] Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Blood Dis, Inst Hematol & Blood Dis Hosp, Haihe Lab Cell Ecosyst,State Key Lab Expt Hematol, Tianjin, Peoples R China
[6] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Ctr Synthet & Syst Biol, MOE Key Lab Bioinformat,Sch Life Sci, Beijing, Peoples R China
[7] Tsinghua Univ, Frontier Res Ctr Biol Struct, Ctr Synthet & Syst Biol, Sch Life Sci, Beijing, Peoples R China
[8] Tsinghua Univ, Tsinghua Peking Ctr Life Sci, Beijing, Peoples R China
[9] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[10] Peking Univ, Canc Hosp & Inst, Minist Educ China, Key Lab Carcinogenesis & Translat Res, Beijing, Peoples R China
[11] Peking Univ, Chengdu Acad Adv Interdisciplinary Biotechnol, Chengdu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CHROMATIN-STATE DISCOVERY; STEM-CELLS; ARCHITECTURE; H3K4ME3; FATE; SEGREGATION; LANDSCAPES; DYNAMICS; ELEMENTS; DOMAINS;
D O I
10.1038/s41586-025-08656-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Substantial epigenetic resetting during early embryo development from fertilization to blastocyst formation ensures zygotic genome activation and leads to progressive cellular heterogeneities1, 2-3. Mapping single-cell epigenomic profiles of core histone modifications that cover each individual cell is a fundamental goal in developmental biology. Here we develop target chromatin indexing and tagmentation (TACIT), a method that enabled genome-coverage single-cell profiling of seven histone modifications across mouse early embryos. We integrated these single-cell histone modifications with single-cell RNA sequencing data to chart a single-cell resolution epigenetic landscape. Multimodal chromatin-state annotations showed that the onset of zygotic genome activation at the early two-cell stage already primes heterogeneities in totipotency. We used machine learning to identify totipotency gene regulatory networks, including stage-specific transposable elements and putative transcription factors. CRISPR activation of a combination of these identified transcription factors induced totipotency activation in mouse embryonic stem cells. Together with single-cell co-profiles of multiple histone modifications, we developed a model that predicts the earliest cell branching towards the inner cell mass and the trophectoderm in latent multimodal space and identifies regulatory elements and previously unknown lineage-specifying transcription factors. Our work provides insights into single-cell epigenetic reprogramming, multimodal regulation of cellular lineages and cell-fate priming during mouse pre-implantation development.
引用
收藏
页码:828 / 839
页数:38
相关论文
共 50 条
  • [21] Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics
    Ludwig, Leif S.
    Lareau, Caleb A.
    Ulirsch, Jacob C.
    Christian, Elena
    Muus, Christoph
    Li, Lauren H.
    Pelka, Karin
    Ge, Will
    Oren, Yaara
    Brack, Alison
    Law, Travis
    Rodman, Christopher
    Chen, Jonathan H.
    Boland, Genevieve M.
    Hacohen, Nir
    Rozenblatt-Rosen, Orit
    Aryee, Martin J.
    Buenrostro, Jason D.
    Regev, Aviv
    Sankaran, Vijay G.
    CELL, 2019, 176 (06) : 1325 - +
  • [22] Single-cell lineage tracing techniques in hematology: unraveling the cellular narrative
    Deng, Lu-Han
    Li, Mu-Zi
    Huang, Xiao-Jun
    Zhao, Xiang-Yu
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [23] Single-cell lineage tracing approaches in hematology research: technical considerations
    Carrelha, Joana
    Lin, Dawn S.
    Rodriguez-Fraticelli, Alejo E.
    Luis, Tiago C.
    Wilkinson, Adam C.
    Cabezas-Wallscheid, Nina
    Tremblay, Cedric S.
    Haas, Simon
    EXPERIMENTAL HEMATOLOGY, 2020, 89 : 26 - 36
  • [24] Simultaneous single-cell lineage tracing and transcriptomics of the developing mammalian retina
    Bell, Claire
    Fang, Weixiang
    Cole, Stacey
    Leeper, Kathleen
    Berlinicke, Cynthia
    Zhang, Pengfei
    Wang, Tza-Huei
    Ji, Hongkai
    Kalhor, Reza
    Zack, Donald J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [25] Theoretical guarantees for phylogeny inference from single-cell lineage tracing
    Wang, Robert
    Zhang, Richard
    Khodaverdian, Alex
    Yosef, Nir
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (12)
  • [26] In preprints: the fast-paced field of single-cell lineage tracing
    Rodriguez-Fraticelli, Alejo
    Morris, Samantha A.
    DEVELOPMENT, 2022, 149 (11):
  • [27] A computational tool suite to facilitate single-cell lineage tracing analyses
    Waterfall, Joshua J.
    Midoun, Adil
    Perie, Leila
    CELL REPORTS METHODS, 2024, 4 (05):
  • [28] Genome editing for cell lineage tracing
    Burgess, Darren J.
    NATURE REVIEWS GENETICS, 2016, 17 (08) : 435 - 435
  • [29] Genome editing for cell lineage tracing
    Darren J. Burgess
    Nature Reviews Genetics, 2016, 17 : 435 - 435
  • [30] Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
    Wagner, Daniel E.
    Weinreb, Caleb
    Collins, Zach M.
    Briggs, James A.
    Megason, Sean G.
    Klein, Allon M.
    SCIENCE, 2018, 360 (6392) : 981 - +