Improved Performance of Solid Oxide Fuel Cells with the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Cathode by a Modified Acid Etch of Sm0.2Ce0.8O2-δ Electrolyte

被引:0
|
作者
Wang, Xueying [1 ,2 ]
Lu, Fei [1 ,2 ]
Liang, Qichao [1 ,2 ]
Shakeel, Farhat [2 ]
Sun, Yilin [1 ,2 ]
Zhang, Guopeng [1 ,2 ]
Huang, Hai [1 ,2 ]
Su, Jinrui [2 ]
Cai, Bin [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Phys, Int Joint Lab Integrated Circuits Design & Applica, Minist Educ, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Phys, Key Lab Mat Phys, Minist Educ, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; GROWTH; SOFC;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The cathode/electrolyte interface bonding plays an important role in the electrochemical properties and long-term stability of solid oxide fuel cells (SOFCs). A modified acid etching technique of alternately dropping concentrated nitric acid and hydrogen peroxide on Sm0.2Ce0.8O2-delta (SDC) electrolyte (0, 5, 10, and 15 min) is developed to improve the bonding between the SDC and BaCo0.4Fe0.4Zr0.1Y0.1O3-delta (BCFZY) effectively. The 10 min-treated cell exhibits the maximum interface peeling strength (25.2 +/- 5.1 N/cm2) and the highest peak power density (1.443-0.169 W cm-2 at 923-723 K). More importantly, markedly enhanced long-term stability at 873 K is observed. The total degradation rate during 20-200 h for the 10 min-treated cell is only 0.102%. The improved performance should be closely associated with an increase in the contact area between the SDC and BCFZY as well as the rejuvenation of the SDC surface. In all, the developed acid etching technique leads to a significantly improved performance of the SDC-based SOFC, showing strong potential for application in distributed power stations.
引用
收藏
页码:4939 / 4948
页数:10
相关论文
共 50 条
  • [41] A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo0.4Fe0.4Zr0.2O3-δ
    Shang, Meng
    Tong, Jianhua
    O'Hayre, Ryan
    RSC ADVANCES, 2013, 3 (36): : 15769 - 15775
  • [42] Auto-combustion synthesis and electrochemical studies of La0.6Sr0.4Co0.2Fe0.8O3-δ - Ce0.8Sm0.1Gd0.1O1.90 nanocomposite cathode for intermediate temperature solid oxide fuel cells
    Kumar, S. Ajith
    Kuppusami, P.
    Vengatesh, P.
    CERAMICS INTERNATIONAL, 2018, 44 (17) : 21188 - 21196
  • [43] BaCo0.4Fe0.4Ce0.1Gd0.1O3-s as positive electrode for reversible protonic ceramic cells
    Tao, Haoliang
    Chen, Guoxin
    Zhang, Qiuju
    Cui, Junfeng
    Wu, Fei
    Chen, Yu
    Zhang, Yang
    Ren, Qihang
    Guan, Wanbing
    Zhu, Liangzhu
    JOURNAL OF POWER SOURCES, 2025, 636
  • [44] High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/ La0.8Sr0.2Ga0.8Mg0.2O3-δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
    Wang, Sea-Fue
    Lu, Hsi-Chuan
    Hsu, Yung-Fu
    Jasinski, Piotr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5429 - 5438
  • [45] Why do BaCo0.4Fe0.4Zr0.1Y0.1O3-δ-derived complex oxides become one of the most promising electrodes for protonic ceramic electrochemical cells? An explanatory review
    Tarutina, Liana R.
    Gordeeva, Maria A.
    Matkin, Danil E.
    Akopian, Mariam T.
    Starostin, George N.
    Kasyanova, Anna V.
    Tarutin, Artem P.
    Danilov, Nikolai A.
    Starostina, Inna A.
    Medvedev, Dmitry A.
    Shao, Zongping
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [46] LaNi0.6Fe0.4O3-Ce0.8Sm0.2O1.9-Ag composite cathode for intermediate temperature solid oxide fuel cells
    Huang, Shouguo
    Feng, Shuangjiu
    Wang, Hong
    Li, Yide
    Wang, Chunchang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 10968 - 10974
  • [47] Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-δ membrane using a thin Pd film protection strategy
    Zhou, Chuan
    Sunarso, Jaka
    Dai, Jie
    Ran, Ran
    Song, Yufei
    He, Fan
    Zhou, Wei
    Shao, Zongping
    JOURNAL OF MEMBRANE SCIENCE, 2020, 596
  • [48] Performance of La0.5Sr0.5Fe0.9Mo0.1O3-δ -Sm0.2Ce0.8O2-δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells
    Chen, Yuee
    Zhang, Leilei
    Wang, Chong
    Cai, Hongdong
    Wang, Li
    Song, Zhaoyuan
    IONICS, 2018, 24 (09) : 2717 - 2728
  • [49] Enhanced performance and stability of interlayer-free La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Zr0.2O2-δ cathode for solid oxide fuel cells
    Liu, Weixing
    Zhao, Zhe
    Tu, Baofeng
    Cui, Daan
    Ou, Dingrong
    Cheng, Mojie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (14) : 4861 - 4867
  • [50] Temperature stability of Na0.1K0.1Pb0.8Nb0.2Ti0.4Zr0.4O3 solid solution
    Andryushin, K. P.
    Shilkina, L. A.
    Andryushina, I. N.
    Dudkina, S., I
    Rudskiy, D., I
    Reznichenko, L. A.
    FERROELECTRICS, 2021, 574 (01) : 23 - 28