This paper proposes and investigates the two-grid stabilized lowest equal-order finite element method for the time-independent dual-permeability-Stokes model with the Beavers-Joseph-Saffman-Jones interface conditions. This method is mainly based on the idea of combining the two-grid and the two local Gauss integrals for the dual-permeability-Stokes system. In this technique, we use a difference between a consistent mass matrix and an under-integrated mass matrix for the pressure variable of the dual-permeability-Stokes model using the lowest equal-order finite element quadruples. In the two-grid scheme, the global problem is solved using the standard P1-P1-P1-P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_1-P_1-P_1-P_1 $$\end{document} finite element approximations only on a coarse grid with grid size H. Then, a coarse grid solution is applied on a fine grid of size h to decouple the interface terms and the mass exchange terms for solving the three independent subproblems such as the Stokes equations, microfracture equations, and the matrix equations on the fine grid. On the other hand, microfracture and matrix equations are decoupled through the mass exchange terms. The weak formulation is reported, and the optimal error estimate is derived for the two-grid schemes. Furthermore, the numerical results validate that the two-grid stabilized lowest equal-order finite element method is effective and has the same accuracy as the coupling scheme when we choose h=H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ h=H<^>2 $$\end{document}.
机构:
Donghua Univ, Coll Sci, Shanghai 201620, Peoples R ChinaDonghua Univ, Coll Sci, Shanghai 201620, Peoples R China
Yu, Jiaping
Zheng, Haibiao
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R ChinaDonghua Univ, Coll Sci, Shanghai 201620, Peoples R China
Zheng, Haibiao
Shi, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Coll Sci, Shenzhen 518055, Peoples R China
Univ Houston, Dept Math, Houston, TX 77024 USADonghua Univ, Coll Sci, Shanghai 201620, Peoples R China
Shi, Feng
Zhao, Ren
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USADonghua Univ, Coll Sci, Shanghai 201620, Peoples R China
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Huang, Pengzhan
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Feng, Xinlong
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Ctr Computat Geosci, Xian 710049, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
机构:
Ho Chi Minh City Open Univ, Fac Civil Engn & Elect, Ho Chi Minh City, VietnamUniv Ghent, Fac Engn & Architecture, Dept Elect Energy Met Mech Construct & Syst, Ghent, Belgium
Le-Thanh, C.
Nguyen-Xuan, H.
论文数: 0引用数: 0
h-index: 0
机构:
Ho Chi Minh City Univ Technol HUTECH, CIRTech Inst, Ho Chi Minh City, Vietnam
China Med Univ, Dept Phys Therapy, Taichung 40402, Taiwan
China Med Univ, Grad Inst Rehabil Sci, Taichung 40402, TaiwanUniv Ghent, Fac Engn & Architecture, Dept Elect Energy Met Mech Construct & Syst, Ghent, Belgium
Nguyen-Xuan, H.
Abdel-Wahab, M.
论文数: 0引用数: 0
h-index: 0
机构:
Duy Tan Univ, Inst Res & Dev, 03 Quang Trung, Da Nang, Vietnam
Univ Ghent, Fac Engn & Architecture, Soete Lab, Ghent, BelgiumUniv Ghent, Fac Engn & Architecture, Dept Elect Energy Met Mech Construct & Syst, Ghent, Belgium