Machine learning operations landscape: platforms and tools

被引:0
|
作者
Berberi, Lisana [1 ]
Kozlov, Valentin [1 ]
Nguyen, Giang [3 ,5 ]
Diaz, Judith Sainz-Pardo [2 ]
Calatrava, Amanda [4 ]
Molto, German [4 ]
Tran, Viet [3 ]
Garcia, Alvaro Lopez [2 ]
机构
[1] Karlsruhe Inst Technol KIT, Sci Comp Ctr SCC, Karlsruhe, Germany
[2] CSIC UC, Inst Fis Cantabria IFCA, Avda Castros S-N, Santander 39005, Spain
[3] Slovak Acad Sci IISAS, Inst Informat, Dubravska Cesta 9, Bratislava 84507, Slovakia
[4] Univ Politecn Valencia, Ctr Mixto CSIC, Inst Instrumentac Imagen Mol I3M, Camino Vera S-N, Valencia 46022, Spain
[5] Slovak Univ Technol Bratislava FIIT STU, Fac Informat & Informat Technol, Ilkovicova 2, Bratislava 84216, Slovakia
关键词
Machine learning operations; MLOps platforms; Performance monitoring; Decision-making;
D O I
10.1007/s10462-025-11164-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the field of machine learning advances, managing and monitoring intelligent models in production, also known as machine learning operations (MLOps), has become essential. Organizations are increasingly adopting artificial intelligence as a strategic tool, thus increasing the need for reliable, and scalable MLOps platforms. Consequently, every aspect of the machine learning life cycle, from workflow orchestration to performance monitoring, presents both challenges and opportunities that require sophisticated, flexible, and scalable technological solutions. This research addresses this demand by providing a comprehensive assessment framework of MLOps platforms highlighting the key features necessary for a robust MLOps solution. The paper examines 16 MLOps tools widely used, which revolve around capabilities within AI infrastructure management, including but not limited to experiment tracking, model deployment, and model inference. Our three-step evaluation framework starts with a feature analysis of the MLOps platforms, then GitHub stars growth assessment for adoption and prominence, and finally, a weighted scoring method to single out the most influential platforms. From this process, we derive valuable insights into the essential components of effective MLOps systems and provide a decision-making flowchart that simplifies platform selection. This framework provides hands-on guidance for organizations looking to initiate or enhance their MLOps strategies, whether they require an end-end solutions or specialized tools.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Machine Learning for Satellite Communications Operations
    Vazquez, Miguel Angel
    Henarejos, Pol
    Pappalardo, Irene
    Grechi, Elena
    Fort, Joan
    Gil, Juan Carlos
    Lancellotti, Rocco Michele
    IEEE COMMUNICATIONS MAGAZINE, 2021, 59 (02) : 22 - 27
  • [22] MLHOps: Machine Learning Health Operations
    Khattak, Faiza Khan
    Subasri, Vallijah
    Krishnan, Amrit
    Pou-Prom, Chloe
    Akinli-Kocak, Sedef
    Dolatabadi, Elham
    Pandya, Deval
    Seyyed-Kalantari, Laleh
    Rudzicz, Frank
    IEEE ACCESS, 2025, 13 : 20374 - 20412
  • [23] LEARNING TOOLS INTEROPERABILITY - A NEW STANDARD FOR INTEGRATION OF DISTANCE LEARNING PLATFORMS
    Shcherbyna, Oleksandr A.
    INFORMATION TECHNOLOGIES AND LEARNING TOOLS, 2015, 47 (03) : 167 - 177
  • [24] Confidential machine learning on untrusted platforms: a survey
    Sharma Sagar
    Chen Keke
    Cybersecurity, 4
  • [25] Confidential machine learning on untrusted platforms: a survey
    Sagar, Sharma
    Keke, Chen
    CYBERSECURITY, 2021, 4 (01)
  • [26] Machine learning and soil sciences: a review aided by machine learning tools
    Padarian, Jose
    Minasny, Budiman
    Mcbratney, Alex B.
    SOIL, 2020, 6 (01) : 35 - 52
  • [27] The Machine Learning landscape of top taggers
    Kasieczka, Gregor
    Plehn, Tilman
    Butter, Anja
    Cranmer, Kyle
    Debnath, Dipsikha
    Dillon, Barry M.
    Fairbairn, Malcolm
    Faroughy, Darius A.
    Fedorko, Wojtek
    Gay, Christophe
    Gouskos, Loukas
    Kamenik, Jernej E.
    Komiske, Patrick T.
    Leiss, Simon
    Lister, Alison
    Macaluso, Sebastian
    Metodiev, Eric M.
    Moore, Liam
    Nachman, Ben
    Nordstrom, Karl
    Pearkes, Jannicke
    Qu, Huilin
    Rath, Yannik
    Rieger, Marcel
    Shih, David
    Thompson, Jennifer M.
    Varma, Sreedevi
    SCIPOST PHYSICS, 2019, 7 (01):
  • [28] Landscape-scale spatial modelling of deforestation, land degradation, and regeneration using machine learning tools
    Grinand, Clovis
    Vieilledent, Ghislain
    Razafimbelo, Tantely
    Rakotoarijaona, Jean-Roger
    Nourtier, Marie
    Bernoux, Martial
    LAND DEGRADATION & DEVELOPMENT, 2020, 31 (13) : 1699 - 1712
  • [29] Machine-learning the string landscape
    He, Yang-Hui
    PHYSICS LETTERS B, 2017, 774 : 564 - 568
  • [30] Free-leg Hexapod: A novel approach of using parallel kinematic platforms for developing miniature machine tools for special purpose operations
    Axinte, D. A.
    Allen, J. M.
    Anderson, R.
    Dane, I.
    Uriarte, L.
    Olara, A.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2011, 60 (01) : 395 - 398