Spin-Hall conductivity and optical characteristics of noncentrosymmetric quantum spin Hall insulators: the case of PbBiI

被引:0
|
作者
Mohammad Mortezaei Nobahari [1 ]
Carmine Autieri [2 ]
机构
[1] Ferdowsi University of Mashhad,Department of Physics
[2] Polish Academy of Sciences,International Research Centre Magtop, Institute of Physics
关键词
D O I
10.1038/s41598-024-77403-9
中图分类号
学科分类号
摘要
Quantum spin Hall insulators have attracted significant attention in recent years. Understanding the optical properties and spin Hall effect in these materials is crucial for technological advancements. In this study, we present theoretical analyses to explore the optical properties, Berry curvature and spin Hall conductivity of pristine and perturbed PbBiI using the linear combination of atomic orbitals and the Kubo formula. The system is not centrosymmetric and it is hosting at the same time Rashba spin-splitting and quantized spin Hall conductivity. Our calculations reveal that the electronic structure can be modified using staggered exchange fields and electric fields, leading to changes in the optical properties. Additionally, the spin Berry curvature and spin Hall conductivity are investigated as a function of the energy and temperature. The results indicate that due to the small dynamical spin Hall conductivity, generating an ac spin current in the PbBiI requires the use of external magnetic fields or magnetic materials.
引用
收藏
相关论文
共 50 条
  • [41] Quantum spin Hall insulators with interactions and lattice anisotropy
    Wu, Wei
    Rachel, Stephan
    Liu, Wu-Ming
    Le Hur, Karyn
    PHYSICAL REVIEW B, 2012, 85 (20)
  • [42] Spin currents, spin-transfer torque, and spin-Hall effects in relativistic quantum mechanics
    Vernes, A.
    Gyoerffy, B. L.
    Weinberger, P.
    PHYSICAL REVIEW B, 2007, 76 (01)
  • [43] Spin-Hall conductivity due to Rashba spin-orbit interaction in disordered systems
    Chalaev, O
    Loss, D
    PHYSICAL REVIEW B, 2005, 71 (24)
  • [44] Correlation Effects in Quantum Spin-Hall Insulators: A Quantum Monte Carlo Study (vol 106, 100403, 2011)
    Hohenadler, M.
    Lang, T. C.
    Assaad, F. F.
    PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [45] Quantum spin-hall effect and topologically invariant Chern numbers
    Sheng, D. N.
    Weng, Z. Y.
    Sheng, L.
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2006, 97 (03)
  • [46] Spin valleytronics in silicene: Quantum spin Hall-quantum anomalous Hall insulators and single-valley semimetals
    Ezawa, Motohiko
    PHYSICAL REVIEW B, 2013, 87 (15)
  • [47] Theory of the spin-Hall effect revisited
    Kleinert, P.
    Bryksin, V. V.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 12, 2006, 3 (12): : 4322 - 4325
  • [48] Inverse spin-Hall effect in GeSn
    Marchionni, A.
    Zucchetti, C.
    Ciccacci, F.
    Finazzi, M.
    Funk, H. S.
    Schwarz, D.
    Oehme, M.
    Schulze, J.
    Bottegoni, F.
    APPLIED PHYSICS LETTERS, 2021, 118 (21)
  • [49] Ultrafast extrinsic spin-Hall currents
    Sherman, E. Ya.
    Najmaie, Ali
    van Driel, H. M.
    Smirl, Arthur L.
    Sipe, J. E.
    SOLID STATE COMMUNICATIONS, 2006, 139 (09) : 439 - 446
  • [50] Photonic Spin-Hall Differential Microscopy
    Wang, Ruisi
    He, Shanshan
    Luo, Hailu
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)