Research on Improved YOLOv5 Pipeline Defect Detection Algorithm

被引:0
|
作者
Zeng, JiangChao [1 ]
Zheng, YiMing [1 ]
Jin, XinPing [1 ]
Lin, JinHong [1 ]
Feng, YongHao [1 ]
机构
[1] Huadong Engineering (Fujian) Corporation Limited, Power China Huadong Engineering Corporation Limited, Fujian, Fuzhou,350003, China
关键词
Photomapping - Water pipelines;
D O I
10.1061/JPSEA2.PSENG-1727
中图分类号
学科分类号
摘要
The main problem addressed in this research is the detection of three types of defects in underground drainage pipelines: gravel intrusion, obstacles, and foreign objects. To tackle this, improvements have been made by incorporating the YOLOv5 algorithm with the attention mechanisms known as the enhanced convolutional block attention module (ECBAM) and switchable atrous convolution (SAC) module. By introducing the redesigned CBAM mechanism, both channel and spatial attention can take the original image as input, enhancing the model's focus on important features while suppressing irrelevant ones. Additionally, integrating the dilated convolution module into the original 3-layer convolution (C3) module expands the model's receptive field and improves its perception capabilities. Finally, the smoothed intersection over union (SIOU) metric enables a more comprehensive evaluation of the matching between predicted and ground truth bounding boxes, providing more accurate guidance for model optimization. The improved algorithm achieved an mean average precision (mAP) of 64.49% in identifying three types of defects in underground drainage pipes, representing a 5.27% increase compared to the original algorithm. This indicates that the improved algorithm showed a certain enhancement in the accuracy of identifying defects in underground drainage pipelines, and it has been applied in real-world conditions for detecting underground drainage pipeline defects. © ASCE.
引用
收藏
相关论文
共 50 条
  • [11] Research on tile surface defect detection by improved YOLOv5
    Yu, Xulong
    Yu, Qiancheng
    Zhang, Yue
    Wang, Aoqiang
    Wang, Jinyun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11319 - 11331
  • [12] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [13] Railway fastener defect detection based on improved YOLOv5 algorithm
    Su, Zhitong
    Han, Kai
    Song, Wei
    Ning, Keqing
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1923 - 1927
  • [14] A rail fastener defect detection algorithm based on improved YOLOv5
    Wang, Ling
    Zang, Qiuyu
    Zhang, Kehua
    Wu, Lintong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2024, 238 (07) : 851 - 862
  • [15] An Improved YOLOv5 Algorithm for Wood Defect Detection Based on Attention
    Han, Siyu
    Jiang, Xiangtao
    Wu, Zhenyu
    IEEE ACCESS, 2023, 11 : 71800 - 71810
  • [16] Improved Yolov5 Algorithm for Surface Defect Detection of Solar Cell
    Li, Pengjie
    Shan, Shuo
    Zeng, Pengzhong
    Wei, Haikun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3601 - 3605
  • [17] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [18] Aluminum Surface Defect Detection Algorithm Based on Improved YOLOv5
    Liang, Jianan
    Kong, Ruiling
    Ma, Rong
    Zhang, Jinhua
    Bian, Xingrui
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (02)
  • [19] Research on improved algorithm for helmet detection based on YOLOv5
    Shan, Chun
    Liu, Hongming
    Yu, Yu
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [20] Research on improved algorithm for helmet detection based on YOLOv5
    Chun Shan
    HongMing Liu
    Yu Yu
    Scientific Reports, 13