A data enhanced algorithm for fault diagnosis of slewing bearings based on times-series generative adversarial networks

被引:0
|
作者
Sun, Li [1 ]
Wu, Jun [1 ]
Li, Guochao [1 ]
Ren, Xiaodie [1 ]
Wang, Jinjun [2 ]
Wen, Sizhao [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mech Engn, Zhenjiang 212000, Jiangsu, Peoples R China
[2] Wuhan Binhu Elect CO Ltd, Wuhan 430205, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
slewing bearings; time series generative adversarial network; Graph attention network; Multi-head attention mechanism; Fault diagnosis;
D O I
10.1007/s11760-025-03939-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the fewer fault samples, it is difficult to diagnose the fault of slewing bearings in complex working conditions. For this reason, a model based on Time-series Generative Adversarial Networks (Time GAN) combined with Synergistic Similarity Graph Construction (SSGC) and Graph Attention Network (GAT) is proposed. Time GAN is introduced to generate new training sample features while preserving the unique temporal correlation of its samples. SSGC method is utilized to construct graph structure data for the newly generated training samples and put them into the GAT model with multi-head attention mechanism for classification. This solves the problem that traditional deep learning methods cannot fully utilize the spatial relationship between training sample features under different working conditions. The experimental results show that the proposed method can effectively recognize each health state of slewing bearing with classification accuracy of up to 90%, which is better than other methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Yuntao Dai
    Lizhang Peng
    Zhaobo Juan
    Yuan Liang
    Jihong Shen
    Shujuan Wang
    Sichao Tan
    Hongyan Yu
    Mingze Sun
    Journal of Electrical Engineering & Technology, 2023, 18 : 3237 - 3252
  • [22] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Dai, Yuntao
    Peng, Lizhang
    Juan, Zhaobo
    Liang, Yuan
    Shen, Jihong
    Wang, Shujuan
    Tan, Sichao
    Yu, Hongyan
    Sun, Mingze
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (04) : 3237 - 3252
  • [23] Transformer fault diagnosis based on adversarial generative networks and deep stacked autoencoder
    Zhang, Lei
    Xu, Zhongyang
    Lu, Chen
    Qiao, Tianjiao
    Su, Hongzhi
    Luo, Yazhou
    HELIYON, 2024, 10 (09)
  • [24] Transformer Fault Diagnosis Based on Adversarial Generative Networks and Deep Stacked Autoencoder
    Zhang, Lei
    Xu, Zhongyang
    Qiao, Tianjiao
    Lu, Chen
    Su, Hongzhi
    Luo, Yazhou
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 496 - 504
  • [25] Fault diagnosis based on conditional generative adversarial networks in nuclear power plants
    Qian, Gensheng
    Liu, Jingquan
    ANNALS OF NUCLEAR ENERGY, 2022, 176
  • [26] Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks
    Yan, Ke
    Su, Jianye
    Huang, Jing
    Mo, Yuchang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (01) : 387 - 395
  • [27] Generative Adversarial Networks for Gearbox of Wind Turbine With Unbalanced Data Sets in Fault Diagnosis
    Su, Yuanhao
    Meng, Liang
    Kong, Xiaojia
    Xu, Tongle
    Lan, Xiaosheng
    Li, Yunfeng
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13285 - 13298
  • [28] Data augment method for machine fault diagnosis using conditional generative adversarial networks
    Wang, Jinrui
    Han, Baokun
    Bao, Huaiqian
    Wang, Mingyan
    Chu, Zhenyun
    Shen, Yuwei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (12) : 2719 - 2727
  • [29] Wind Turbine Fault Diagnosis with Imbalanced SCADA Data Using Generative Adversarial Networks
    Wang, Hong
    Li, Taikun
    Xie, Mingyang
    Tian, Wenfang
    Han, Wei
    ENERGIES, 2025, 18 (05)
  • [30] Evaluation of Generative Adversarial Networks for Time Series Data
    Arnout, Hiba
    Bronner, Johanna
    Runkler, Thomas
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,