Geometric rigidity on Sobolev spaces with variable exponent and applications

被引:1
|
作者
Almi, Stefano [1 ,4 ]
Caponi, Maicol [1 ]
Friedrich, Manuel [2 ,3 ]
Solombrino, Francesco [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[4] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio 1, I-67100 Laquila, Italy
基金
奥地利科学基金会;
关键词
Rigidity estimates; Korn inequality; Variable exponent; Mixed growth; Nonlinear and linear elasticity; Gamma-convergence; GAMMA-LIMIT; NONLINEAR ELASTICITY; GRIFFITH ENERGIES; LINEAR ELASTICITY; INEXTENSIBLE RODS; DERIVATION; REGULARITY; CONVERGENCE; MINIMIZERS; MODELS;
D O I
10.1007/s00030-024-01016-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present extensions of rigidity estimates and of Korn's inequality to the setting of (mixed) variable exponents growth. The proof techniques, based on a classical covering argument, rely on the log-Holder continuity of the exponent to get uniform regularity estimates on each cell of the cover, and on an extension result a la Nitsche in Sobolev spaces with variable exponents. As an application, by means of Gamma-convergence we perform a passage from nonlinear to linearized elasticity under variable subquadratic energy growth far from the energy well.
引用
收藏
页数:50
相关论文
共 50 条
  • [21] Variable Exponent Sobolev Spaces for Semilinear Elliptic Systems
    Zhong Tan
    Fei Fang
    Mediterranean Journal of Mathematics, 2013, 10 : 1353 - 1367
  • [22] VARIABLE EXPONENT SOBOLEV SPACES ASSOCIATED WITH JACOBI EXPANSIONS
    Almeida, Victor
    Betancor, Jorge J.
    Castro, Alejandro J.
    Sanabria, Alejandro
    Scotto, Roberto
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04): : 901 - 946
  • [23] On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications
    Chems Eddine, Nabil
    Ragusa, Maria Alessandra
    Repovs, Dusan D.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 725 - 756
  • [24] On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications
    Nabil Chems Eddine
    Maria Alessandra Ragusa
    Dušan D. Repovš
    Fractional Calculus and Applied Analysis, 2024, 27 : 725 - 756
  • [25] Modular Geometric Properties in Variable Exponent Spaces
    Khamsi, Mohamed A.
    Mendez, Osvaldo D.
    Reich, Simeon
    MATHEMATICS, 2022, 10 (14)
  • [26] Variable Exponent p(middot)-Kirchhoff Type Problem with Convection in Variable Exponent Sobolev Spaces
    El Hammar, Hasnae
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19
  • [27] On the Sobolev trace Theorem for variable exponent spaces in the critical range
    Fernandez Bonder, Julian
    Saintier, Nicolas
    Silva, Analia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1607 - 1628
  • [28] Embedding theorems for variable exponent fractional Sobolev spaces and an application
    Liu, Haikun
    Fu, Yongqiang
    AIMS MATHEMATICS, 2021, 6 (09): : 9835 - 9858
  • [29] CHARACTERIZATIONS OF SOBOLEV SPACES WITH VARIABLE EXPONENT VIA AVERAGES ON BALLS
    Xu, Jingshi
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (04) : 569 - 579
  • [30] Counter-examples of regularity in variable exponent Sobolev spaces
    Hästö, PA
    P-HARMONIC EQUATION AND RECENT ADVANCES IN ANALYSIS, 2005, 370 : 133 - +