Advanced artificial intelligence with federated learning framework for privacy-preserving cyberthreat detection in IoT-assisted sustainable smart cities

被引:0
|
作者
Ragab, Mahmoud [1 ]
Ashary, Ehab Bahaudien [2 ]
Alghamdi, Bandar M. [1 ]
Aboalela, Rania [3 ]
Alsaadi, Naif [4 ]
Maghrabi, Louai A. [5 ]
Allehaibi, Khalid H. [6 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Fac Engn, Elect & Comp Engn Dept, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol Rabigh, Informat Syst Dept, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, Fac Engn Rabigh, Dept Ind Engn, Jeddah 21589, Saudi Arabia
[5] Univ Business & Technol, Coll Engn, Dept Software Engn, Jeddah, Saudi Arabia
[6] King Abdulaziz Univ, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Federated Learning; Privacy preserving; Artificial Intelligence; Cyberthreat; Smart cities; IoT; Walrus optimization Algorithm; DDOS ATTACK DETECTION; OPTIMIZATION;
D O I
10.1038/s41598-025-88843-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the fast growth of artificial intelligence (AI) and a novel generation of network technology, the Internet of Things (IoT) has become global. Malicious agents regularly utilize novel technical vulnerabilities to use IoT networks in essential industries, the military, defence systems, and medical diagnosis. The IoT has enabled well-known connectivity by connecting many services and objects. However, it has additionally made cloud and IoT frameworks vulnerable to cyberattacks, production cybersecurity major concerns, mainly for the growth of trustworthy IoT networks, particularly those empowering smart city systems. Federated Learning (FL) offers an encouraging solution to address these challenges by providing a privacy-preserving solution for investigating and detecting cyberattacks in IoT systems without negotiating data privacy. Nevertheless, the possibility of FL regarding IoT forensics remains mostly unexplored. Deep learning (DL) focused cyberthreat detection has developed as a powerful and effective approach to identifying abnormal patterns or behaviours in the data field. This manuscript presents an Advanced Artificial Intelligence with a Federated Learning Framework for Privacy-Preserving Cyberthreat Detection (AAIFLF-PPCD) approach in IoT-assisted sustainable smart cities. The AAIFLF-PPCD approach aims to ensure robust and scalable cyberthreat detection while preserving the privacy of IoT users in smart cities. Initially, the AAIFLF-PPCD model utilizes Harris Hawk optimization (HHO)-based feature selection to identify the most related features from the IoT data. Next, the stacked sparse auto-encoder (SSAE) classifier is employed for detecting cyberthreats. Eventually, the walrus optimization algorithm (WOA) is used for hyperparameter tuning to improve the parameters of the SSAE approach and achieve optimal performance. The simulated outcome of the AAIFLF-PPCD technique is evaluated using a benchmark dataset. The performance validation of the AAIFLF-PPCD technique exhibited a superior accuracy value of 99.47% over existing models under diverse measures.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Privacy-preserving vertical federated broad learning system for artificial intelligence generated image content
    Li, Fengyin
    Ge, Junrong
    Wang, Xiaojiao
    Zhao, Gang
    Yu, Xilong
    Li, Xinru
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [32] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [33] Privacy-preserving federated learning framework in multimedia courses recommendation
    YangJie Qin
    Ming Li
    Jia Zhu
    Wireless Networks, 2023, 29 : 1535 - 1544
  • [34] Efficient Privacy-Preserving Federated Learning Against Inference Attacks for IoT
    Miao, Yifeng
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [35] Privacy-Preserving Big Data Security for IoT With Federated Learning and Cryptography
    Awan, Kamran Ahmad
    Din, Ikram Ud
    Almogren, Ahmad
    Rodrigues, Joel J. P. C.
    IEEE ACCESS, 2023, 11 : 120918 - 120934
  • [36] Design and implementation of privacy-preserving federated learning algorithm for consumer IoT
    Zhao B.
    Ji Y.
    Shi Y.
    Jiang X.
    Alexandria Engineering Journal, 2024, 106 : 206 - 216
  • [37] Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices
    Zhao, Yang
    Zhao, Jun
    Jiang, Linshan
    Tan, Rui
    Niyato, Dusit
    Li, Zengxiang
    Lyu, Lingjuan
    Liu, Yingbo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1817 - 1829
  • [38] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [39] A Hierarchical Asynchronous Federated Learning Privacy-Preserving Framework for IoVs
    Zhou, Rui
    Niu, Xianhua
    Xiong, Ling
    Wang, Yangpeng
    Zhao, Yue
    Yu, Kai
    FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 99 - 113
  • [40] PEPFL:A framework for a practical and efficient privacy-preserving federated learning
    Yange Chen
    Baocang Wang
    Hang Jiang
    Pu Duan
    Yuan Ping
    Zhiyong Hong
    Digital Communications and Networks, 2024, 10 (02) : 355 - 368