Advanced artificial intelligence with federated learning framework for privacy-preserving cyberthreat detection in IoT-assisted sustainable smart cities

被引:0
|
作者
Ragab, Mahmoud [1 ]
Ashary, Ehab Bahaudien [2 ]
Alghamdi, Bandar M. [1 ]
Aboalela, Rania [3 ]
Alsaadi, Naif [4 ]
Maghrabi, Louai A. [5 ]
Allehaibi, Khalid H. [6 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Fac Engn, Elect & Comp Engn Dept, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol Rabigh, Informat Syst Dept, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, Fac Engn Rabigh, Dept Ind Engn, Jeddah 21589, Saudi Arabia
[5] Univ Business & Technol, Coll Engn, Dept Software Engn, Jeddah, Saudi Arabia
[6] King Abdulaziz Univ, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Federated Learning; Privacy preserving; Artificial Intelligence; Cyberthreat; Smart cities; IoT; Walrus optimization Algorithm; DDOS ATTACK DETECTION; OPTIMIZATION;
D O I
10.1038/s41598-025-88843-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the fast growth of artificial intelligence (AI) and a novel generation of network technology, the Internet of Things (IoT) has become global. Malicious agents regularly utilize novel technical vulnerabilities to use IoT networks in essential industries, the military, defence systems, and medical diagnosis. The IoT has enabled well-known connectivity by connecting many services and objects. However, it has additionally made cloud and IoT frameworks vulnerable to cyberattacks, production cybersecurity major concerns, mainly for the growth of trustworthy IoT networks, particularly those empowering smart city systems. Federated Learning (FL) offers an encouraging solution to address these challenges by providing a privacy-preserving solution for investigating and detecting cyberattacks in IoT systems without negotiating data privacy. Nevertheless, the possibility of FL regarding IoT forensics remains mostly unexplored. Deep learning (DL) focused cyberthreat detection has developed as a powerful and effective approach to identifying abnormal patterns or behaviours in the data field. This manuscript presents an Advanced Artificial Intelligence with a Federated Learning Framework for Privacy-Preserving Cyberthreat Detection (AAIFLF-PPCD) approach in IoT-assisted sustainable smart cities. The AAIFLF-PPCD approach aims to ensure robust and scalable cyberthreat detection while preserving the privacy of IoT users in smart cities. Initially, the AAIFLF-PPCD model utilizes Harris Hawk optimization (HHO)-based feature selection to identify the most related features from the IoT data. Next, the stacked sparse auto-encoder (SSAE) classifier is employed for detecting cyberthreats. Eventually, the walrus optimization algorithm (WOA) is used for hyperparameter tuning to improve the parameters of the SSAE approach and achieve optimal performance. The simulated outcome of the AAIFLF-PPCD technique is evaluated using a benchmark dataset. The performance validation of the AAIFLF-PPCD technique exhibited a superior accuracy value of 99.47% over existing models under diverse measures.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858
  • [2] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [3] Privacy-Preserving Asynchronous Federated Learning Framework in Distributed IoT
    Yan, Xinru
    Miao, Yinbin
    Li, Xinghua
    Choo, Kim-Kwang Raymond
    Meng, Xiangdong
    Deng, Robert H. H.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13281 - 13291
  • [4] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [5] Intrusion Detection Based on Privacy-Preserving Federated Learning for the Industrial IoT
    Ruzafa-Alcazar, Pedro
    Fernandez-Saura, Pablo
    Marmol-Campos, Enrique
    Gonzalez-Vidal, Aurora
    Hernandez-Ramos, Jose L.
    Bernal-Bernabe, Jorge
    Skarmeta, Antonio F.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1145 - 1154
  • [6] Privacy-Preserving Defense: Intrusion Detection in IoT using Federated Learning
    Almeida, Leonardo
    Rodrigues, Pedro
    Teixeira, Rafael
    Antunes, Mario
    Aguiar, Rui L.
    2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024, 2024, : 908 - 913
  • [7] RPFL: A Reliable and Privacy-Preserving Framework for Federated Learning-Based IoT Malware Detection
    Asiri, Mohammed
    Khemakhem, Maher A.
    Alhebshi, Reemah M.
    Alsulami, Bassma S.
    Eassa, Fathy E.
    ELECTRONICS, 2025, 14 (06):
  • [8] Privacy-Preserving Federated Learning for Intrusion Detection in IoT Environments: A Survey
    Vyas, Abhishek
    Lin, Po-Ching
    Hwang, Ren-Hung
    Tripathi, Meenakshi
    IEEE ACCESS, 2024, 12 : 127018 - 127050
  • [9] FedDetect: A Novel Privacy-Preserving Federated Learning Framework for Energy Theft Detection in Smart Grid
    Wen, Mi
    Xie, Rong
    Lu, Kejie
    Wang, Liangliang
    Zhang, Kai
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (08): : 6069 - 6080
  • [10] Privacy-Preserving Asynchronous Grouped Federated Learning for IoT
    Zhang, Tao
    Song, Anxiao
    Dong, Xuewen
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07): : 5511 - 5523