Prompt fission neutron uranium logging (II): dead-time effect of the neutron time spectrum

被引:0
|
作者
Zhang, Yan [1 ,2 ]
Liu, Chi [1 ]
Liu, Shi-Liang [1 ]
Zhang, Hao-Ran [1 ]
Wang, Hai-Tao [1 ]
Qu, Jin-Hui [1 ]
Hu, Wen-Xing [1 ]
Wang, Ren-Bo [1 ]
Tang, Bin [1 ]
机构
[1] East China Univ Technol, Natl Key Lab Uranium Resources Explorat Min & Nucl, Nanchang 330013, Peoples R China
[2] East China Univ Technol, Fundamental Sci Radioact Geol & Explorat Technol L, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
PFNUL; Neutron time spectrum; Dead time; Pulsed source; Correction method; DETECTORS;
D O I
10.1007/s41365-024-01615-x
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The acquisition of neutron time spectrum data plays a pivotal role in the precise quantification of uranium via prompt fission neutron uranium logging (PFNUL). However, the impact of the detector dead-time effect remains paramount in the accurate acquisition of the neutron time spectrum. Therefore, it is imperative for neutron logging instruments to establish a dead-time correction method that is not only uncomplicated but also practical and caters to various logging sites. This study has formulated an innovative equation for determining dead time and introduced a dead-time correction method for the neutron time spectrum, called the "dual flux method." Using this approach, a logging instrument captures two neutron time spectra under disparate neutron fluxes. By carefully selecting specific "windows" on the neutron time spectrum, the dead time can be accurately ascertained. To substantiate its efficacy and discern the influencing factors, experiments were conducted utilizing a deuterium-tritium (D-T) neutron source, a Helium-3 (3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document}He) detector, and polyethylene shielding to collate and analyze the neutron time spectrum under varying neutron fluxes (at high voltages). The findings underscore that the "height" and "spacing" of the two windows are the most pivotal influencing factors. Notably, the "height" (fd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{\text{d}}$$\end{document}) should surpass 2, and the "spacing" twd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t}_{\text{wd}}$$\end{document} should exceed 200 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}s. The dead time of the 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document}He detector determined in the experiment was 7.35 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}s. After the dead-time correction, the deviation of the decay coefficients from the theoretical values for the neutron time spectrum under varying neutron fluxes decreased from 12.4% to within 5%. Similarly, for the PFNUL instrument, the deviation in the decay coefficients decreased from 22.94 to 0.49% after correcting for the dead-time effect. These results demonstrate the exceptional efficacy of the proposed method in ensuring precise uranium quantification. The dual flux method was experimentally validated as a universal approach applicable to pulsed neutron logging instruments and holds immense significance for uranium exploration.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prompt fission neutron uranium logging(Ⅱ): dead?time effect of the neutron time spectrum
    Yan Zhang
    Chi Liu
    ShiLiang Liu
    HaoRan Zhang
    HaiTao Wang
    JinHui Qu
    WenXing Hu
    RenBo Wang
    Bin Tang
    Nuclear Science and Techniques, 2025, 36 (02) : 3 - 15
  • [2] PROMPT FISSION NEUTRON LOGGING FOR URANIUM
    GIVENS, WW
    STROMSWOLD, DC
    NUCLEAR GEOPHYSICS, 1989, 3 (04): : 299 - 307
  • [3] URANIUM LOGGING BY THE PROMPT FISSION NEUTRON TECHNIQUE
    HUMPHREYS, DR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (07): : 793 - 793
  • [4] URANIUM LOGGING BY THE PROMPT FISSION NEUTRON TECHNIQUE
    HUMPHREYS, DR
    BARNARD, RW
    BIVENS, HM
    JENSEN, DH
    STEPHENSON, WA
    WEINLEIN, JH
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1981, 28 (02) : 1691 - 1695
  • [5] CORRECTIONS FOR PROMPT-FISSION-NEUTRON URANIUM LOGGING DATA
    RENKEN, JH
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1978, 30 (NOV): : 322 - 323
  • [6] ANALYTICAL MODELING OF PROMPT FISSION NEUTRON URANIUM LOGGING TECHNIQUE
    JENSEN, DH
    GEOPHYSICS, 1977, 42 (01) : 158 - 158
  • [8] APPLICATION OF PROMPT FISSION NEUTRON LOGGING TO THE URANIUM DEPOSITS OF STRATIFIED INFILTRATION TYPE
    Temirkhanova, Raushan
    GEOCONFERENCE ON SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING, VOL I, 2014, : 413 - 420
  • [9] SPECTRUM - A computer code for prompt fission neutron spectrum and prompt neutron multiplicity calculation
    Vladuca, G
    Tudora, A
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 125 (1-3) : 221 - 238
  • [10] Experimental study of the influence of borehole parameters on prompt fission neutron uranium logging and its corrections
    Zhou, Pengfei
    Tang, Bin
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2024, 56 (08) : 3090 - 3096