Metric dimension of star fan graph

被引:0
|
作者
Prabhu, S. [1 ]
Jeba, D. Sagaya Rani [2 ]
Stephen, Sudeep [3 ]
机构
[1] Rajalakshmi Engn Coll, Dept Math, Chennai 602105, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, India
[3] Australian Catholic Univ, Fac Educ & Arts, Sydney, NSW 2118, Australia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Resolving set; Basis; Star fan graph; CIRCULANT;
D O I
10.1038/s41598-024-83562-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Every node in a network is said to be resolved if it can be uniquely identified by a vector of distances to a specific set of nodes. The metric dimension is equivalent to the least possible cardinal number of a resolving set. Conditional resolving sets are obtained by imposing various constraints on resolving set. It is a fundamental parameter that provides insights into the structural properties and navigability of graphs, with diverse applications across different fields. This article focuses on identifying the metric dimension for a new network, star fan graph.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] THE METRIC DIMENSION OF A GRAPH COMPOSITION PRODUCTS WITH STAR
    Saputro, S.
    Suprijanto, D.
    Baskoro, Edi
    Salman, A.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2012, 18 (02) : 85 - 92
  • [2] On the metric dimension of a graph
    Sooryanarayana, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (04): : 413 - 415
  • [3] On the metric dimension of the total graph of a graph
    Sooryanarayana, B.
    Shreedhar, K.
    Narahari, N.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (04) : 82 - 95
  • [4] On the metric dimension of the Jahangir graph
    Tomescu, Ioan
    Javaid, Imran
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (04): : 371 - 376
  • [5] ON THE BOOLEAN METRIC DIMENSION OF A GRAPH
    MELTER, RA
    TOMESCU, I
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (05): : 407 - 415
  • [6] THE LOCAL METRIC DIMENSION OF A GRAPH
    Okamoto, Futaba
    Phinezy, Bryan
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2010, 135 (03): : 239 - 255
  • [7] Edge metric dimension and mixed metric dimension of a plane graph Tn
    Shen, Huige
    Qu, Jing
    Kang, Na
    Lin, Cong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [8] Edge metric dimension and mixed metric dimension of planar graph Qn
    Qu, Jing
    Cao, Nanbin
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 462 - 475
  • [9] The connected metric dimension at a vertex of a graph
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    THEORETICAL COMPUTER SCIENCE, 2020, 806 : 53 - 69
  • [10] The simultaneous metric dimension of graph families
    Ramirez-Cruz, Yunior
    Oellermann, Ortrud R.
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2016, 198 : 241 - 250