Percolation for 2D Classical Heisenberg Model and Exit Sets of Vector Valued GFF

被引:0
|
作者
Aru, Juhan [1 ]
Garban, Christophe [2 ,3 ]
Sepulveda, Avelio [4 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Math, CH-1015 Lausanne, Switzerland
[2] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[3] Inst Univ France IUF, Paris, France
[4] Univ Chile, Ctr Modelamiento Matematico AFB170001, UMI CNRS 2807, Beauchef 851, Santiago, Chile
关键词
GAUSSIAN FREE-FIELD; PHASE-TRANSITION; RANDOM INTERLACEMENTS; LEVEL LINES; SOFT PHASE; EXISTENCE; ABSENCE; SHARPNESS; GEOMETRY; DECAY;
D O I
10.1007/s00220-024-05208-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our motivation in this paper is twofold. First, we study the geometry of a class of exploration sets, called exit sets, which are naturally associated with a 2D vector-valued Gaussian Free Field : phi:Z2 -> RN,N >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : \mathbb {Z}<^>2 \rightarrow \mathbb {R}<^>N, N\ge 1$$\end{document}. We prove that, somewhat surprisingly, these sets are a.s. degenerate as long as N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, while they are conjectured to be macroscopic and fractal when N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1$$\end{document}. This analysis allows us, when N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, to understand the percolation properties of the level sets of {& Vert;phi(x)& Vert;2,x is an element of Z2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ \Vert \phi (x)\Vert _{{2}}, x\in \mathbb {Z}<^>2\}$$\end{document} and leads us to our second main motivation in this work: if one projects a spin O(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N+1)$$\end{document} model (the case N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document} corresponds to the classical Heisenberg model) down to a spin O(N) model, we end up with a spin O(N) in a quenched disorder given by random conductances on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>2$$\end{document}. Using the exit sets of the N-vector-valued GFF, we obtain a local and geometric description of this random disorder in the limit beta ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \rightarrow \infty $$\end{document}. This allows us in particular to revisit a series of celebrated works by Patrascioiu and Seiler (J Stat Phys 69(3):573-595, 1992, Nucl Phys B Proc Suppl 30:184-191, 1993, J Stat Phys 106(3):811-826, 2002) which argued against Polyakov's prediction that spin O(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N+1)$$\end{document} model is massive at all temperatures as long as N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} (Polyakov in Phys Lett B 59(1):79-81, 1975). We make part of their arguments rigorous and more importantly we provide the following counter-example: we build ergodic environments of (arbitrary) high conductances with (arbitrary) small and disconnected regions of low conductances in which, despite the predominance of high conductances, the XY model remains massive. Of independent interest, we prove that at high beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the fluctuations of a classical Heisenberg model near a north pointing spin are given by a N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document} vectorial GFF. This is implicit for example in Polyakov (1975) but we give here the first (non-trivial) rigorous proof. Also, independently of the recent work Dub & eacute;dat and Falconet (Random clusters in the villain and xy models, arXiv preprint arXiv:2210.03620, 2022), we show that two-point correlation functions of the spin O(N) model can be given in terms of certain percolation events in the cable graph for any N >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Knight shifts around vacancies in the 2D Heisenberg model
    Anfuso, F
    Eggert, S
    PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [22] 2D ISING-HEISENBERG MODEL WITH QUARTIC INTERACTION
    Valverde, J. S.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, (01): : 277 - 282
  • [23] A diagrammatic theory of the antiferromagnetic frustrated 2d Heisenberg model
    Reuther, Johannes
    Woelfle, Peter
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [24] CRITICAL-TEMPERATURE FOR THE 2D HEISENBERG-MODEL
    PRAVECZKI, E
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (11): : 2161 - 2164
  • [25] Note on spin structure of the classical vector spin Heisenberg model
    Terao, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (09) : 2642 - 2643
  • [26] MC-MD SIMULATION OF CLASSICAL 2D ANTIFERROMAGNETIC HEISENBERG SPIN SYSTEMS
    KAWABATA, C
    TAKEUCHI, M
    NAKANISHI, T
    HAMAMOTO, H
    BISHOP, AR
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 90-1 : 284 - 286
  • [27] √logt-SUPERDIFFUSIVITY FOR A BROWNIAN PARTICLE IN THE CURL OF THE 2D GFF
    Cannizzaro, Giuseppe
    Haunschmid-Sibitz, Levi
    Toninelli, Fabio
    ANNALS OF PROBABILITY, 2022, 50 (06): : 2475 - 2498
  • [28] Is critical 2D percolation universal?
    Beffara, Vinceiit
    IN AND OUT OF EQUILIBRIUM 2, 2008, 60 : 31 - 58
  • [29] Localization in 2D quantum percolation
    Travenec, I.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (08): : 1604 - 1610
  • [30] SPANNING PROBABILITY IN 2D PERCOLATION
    ZIFF, RM
    PHYSICAL REVIEW LETTERS, 1992, 69 (18) : 2670 - 2673