Percolation for 2D Classical Heisenberg Model and Exit Sets of Vector Valued GFF

被引:0
|
作者
Aru, Juhan [1 ]
Garban, Christophe [2 ,3 ]
Sepulveda, Avelio [4 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Math, CH-1015 Lausanne, Switzerland
[2] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[3] Inst Univ France IUF, Paris, France
[4] Univ Chile, Ctr Modelamiento Matematico AFB170001, UMI CNRS 2807, Beauchef 851, Santiago, Chile
关键词
GAUSSIAN FREE-FIELD; PHASE-TRANSITION; RANDOM INTERLACEMENTS; LEVEL LINES; SOFT PHASE; EXISTENCE; ABSENCE; SHARPNESS; GEOMETRY; DECAY;
D O I
10.1007/s00220-024-05208-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our motivation in this paper is twofold. First, we study the geometry of a class of exploration sets, called exit sets, which are naturally associated with a 2D vector-valued Gaussian Free Field : phi:Z2 -> RN,N >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : \mathbb {Z}<^>2 \rightarrow \mathbb {R}<^>N, N\ge 1$$\end{document}. We prove that, somewhat surprisingly, these sets are a.s. degenerate as long as N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, while they are conjectured to be macroscopic and fractal when N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1$$\end{document}. This analysis allows us, when N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, to understand the percolation properties of the level sets of {& Vert;phi(x)& Vert;2,x is an element of Z2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ \Vert \phi (x)\Vert _{{2}}, x\in \mathbb {Z}<^>2\}$$\end{document} and leads us to our second main motivation in this work: if one projects a spin O(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N+1)$$\end{document} model (the case N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document} corresponds to the classical Heisenberg model) down to a spin O(N) model, we end up with a spin O(N) in a quenched disorder given by random conductances on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>2$$\end{document}. Using the exit sets of the N-vector-valued GFF, we obtain a local and geometric description of this random disorder in the limit beta ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \rightarrow \infty $$\end{document}. This allows us in particular to revisit a series of celebrated works by Patrascioiu and Seiler (J Stat Phys 69(3):573-595, 1992, Nucl Phys B Proc Suppl 30:184-191, 1993, J Stat Phys 106(3):811-826, 2002) which argued against Polyakov's prediction that spin O(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N+1)$$\end{document} model is massive at all temperatures as long as N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} (Polyakov in Phys Lett B 59(1):79-81, 1975). We make part of their arguments rigorous and more importantly we provide the following counter-example: we build ergodic environments of (arbitrary) high conductances with (arbitrary) small and disconnected regions of low conductances in which, despite the predominance of high conductances, the XY model remains massive. Of independent interest, we prove that at high beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the fluctuations of a classical Heisenberg model near a north pointing spin are given by a N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document} vectorial GFF. This is implicit for example in Polyakov (1975) but we give here the first (non-trivial) rigorous proof. Also, independently of the recent work Dub & eacute;dat and Falconet (Random clusters in the villain and xy models, arXiv preprint arXiv:2210.03620, 2022), we show that two-point correlation functions of the spin O(N) model can be given in terms of certain percolation events in the cable graph for any N >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Percolation properties of the 2D Heisenberg model
    Allés, B
    Alonso, JJ
    Criado, C
    Pepe, M
    PHYSICAL REVIEW LETTERS, 1999, 83 (18) : 3669 - 3672
  • [2] Comment on "Percolation properties of the 2D Heisenberg model"
    Patrascioiu, A
    Seiler, E
    PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5916 - 5916
  • [3] Analytical solution of the 2D classical Heisenberg model - Comment
    Leroyer, Y
    EUROPHYSICS LETTERS, 1996, 34 (04): : 311 - 312
  • [4] Analytical solution of the 2D classical Heisenberg model - Reply
    Curely, J
    EUROPHYSICS LETTERS, 1996, 34 (04): : 313 - 315
  • [5] ANALYTICAL SOLUTION OF THE 2D CLASSICAL HEISENBERG-MODEL
    CURELY, J
    EUROPHYSICS LETTERS, 1995, 32 (06): : 529 - 534
  • [6] Comment on "Percolation properties of the 2D Heisenberg model" -: Alles, Alonso, Criado, and Pepe reply
    Allés, B
    Alonso, JJ
    Criado, C
    Pepe, M
    PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5917 - 5917
  • [7] Percolation and the existence of a soft phase in the classical Heisenberg model
    Patrascioiu, A
    Seiler, E
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (3-4) : 811 - 826
  • [8] Percolation and the Existence of a Soft Phase in the Classical Heisenberg Model
    Adrian Patrascioiu
    Erhard Seiler
    Journal of Statistical Physics, 2002, 106 : 811 - 826
  • [9] Topological and dynamical excitations in a classical 2D easy-axis Heisenberg model
    Kamppeter, T
    Leonel, SA
    Mertens, FG
    Gouvêa, ME
    Pires, AST
    Kovalev, AS
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (01): : 93 - 102
  • [10] Topological and dynamical excitations in a classical 2D easy-axis Heisenberg model
    T. Kamppeter
    S.A. Leonel
    F.G. Mertens
    M.E. Gouvêa
    A.S.T. Pires
    A.S. Kovalev
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 93 - 102