Meta-heuristic algorithms for influence maximization: a survey

被引:0
|
作者
Chencheng Fan [1 ]
Zhixiao Wang [1 ]
Jian Zhang [2 ]
Jiayu Zhao [1 ]
Xianfeng Meng [1 ]
机构
[1] China University of Mining and Technology,Department of Computer Science
[2] Mine Digitization Engineering Research Center of the Ministry of Education,School of Physical Education
[3] China University of Mining and Technology,undefined
关键词
Influence maximization; Meta-heuristic algorithms; Multi-objective optimization; Complex networks; Genetic algorithms;
D O I
10.1007/s12530-024-09640-2
中图分类号
学科分类号
摘要
Influence maximization (IM) is a key problem in social network analysis, which has attracted attention of many scholars due to the wide range of applications, the variety of IM algorithms have been proposed from different perspectives. In this paper, we review IM algorithms from the perspective of meta-heuristic optimization, proposed a two-layer structure taxonomy to organize almost all the meta-heuristic IM algorithms. The initial layer, predicated upon the delineation of problem construction models, stratifies IM algorithms into two categories: single-objective and multi-objective IM algorithms. Subsequently, the secondary layer discerns between evolution-based and population intelligence-based IM algorithms, delineating them according to the underlying conceptual frameworks, a detailed exposition and analysis ensue. Subsequent scrutiny involves an exhaustive evaluation of the merits and demerits inherent in each IM algorithm, juxtaposing considerations such as time complexity and experimental validation methodologies. Furthermore, we distill myriad strategies aimed at enhancing accuracy and mitigating time complexity across the four phases of the algorithmic process. Finally, based on the above analysis, the challenges and future directions of IM problems are outlined from the perspective of algorithms, applications and models.
引用
收藏
相关论文
共 50 条
  • [21] Comparison of meta-heuristic algorithms for clustering rectangles
    Burke, E
    Kendall, G
    COMPUTERS & INDUSTRIAL ENGINEERING, 1999, 37 (1-2) : 383 - 386
  • [22] Groundwater Model Calibration by Meta-Heuristic Algorithms
    Bozorg-Haddad, Omid
    Tabari, M. Mohammad Rezapour
    Fallah-Mehdipour, E.
    Marino, M. A.
    WATER RESOURCES MANAGEMENT, 2013, 27 (07) : 2515 - 2529
  • [23] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [24] Groundwater Model Calibration by Meta-Heuristic Algorithms
    O. Bozorg Haddad
    M. Mohammad Rezapour Tabari
    E. Fallah-Mehdipour
    M. A. Mariño
    Water Resources Management, 2013, 27 : 2515 - 2529
  • [25] Meta-Heuristic Algorithms for Hydrologic Frequency Analysis
    Yousef Hassanzadeh
    Amin Abdi
    Siamak Talatahari
    Vijay P. Singh
    Water Resources Management, 2011, 25 : 1855 - 1879
  • [26] Overview of Parallel Computing for Meta-Heuristic Algorithms
    Sun, Ying
    Chu, Shu-Chuan
    Hu, Pei
    Watada, Junzo
    Si, Mingchao
    Pan, Jeng-Shyang
    Journal of Network Intelligence, 2022, 7 (03): : 656 - 681
  • [27] Meta-heuristic algorithms as tools for hydrological science
    Yoo D.G.
    Kim J.H.
    Geoscience Letters, 1 (1)
  • [28] Spectral and meta-heuristic algorithms for software clustering
    Shokoufandeh, A
    Mancoridis, S
    Denton, T
    Maycock, M
    JOURNAL OF SYSTEMS AND SOFTWARE, 2005, 77 (03) : 213 - 223
  • [29] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2013, 166 (06) : 315 - 324
  • [30] Meta-Heuristic Algorithms for Hydrologic Frequency Analysis
    Hassanzadeh, Yousef
    Abdi, Amin
    Talatahari, Siamak
    Singh, Vijay P.
    WATER RESOURCES MANAGEMENT, 2011, 25 (07) : 1855 - 1879