Parameter Identification of a Flexible-Joint Robot Axis using Sinusoidal Position Tracking

被引:0
|
作者
Hafez, Ishaq [1 ]
Dhaouadi, Rached [1 ]
机构
[1] Univ City Sharjah, Amer Univ Sharjah, Dept Elect Engn, Sharjah 26666, U Arab Emirates
关键词
Mechanical parameter identification; Inertia; Coupling stiffness; Friction; Flexible-joint robot axes; Two-mass model; Sinusoidal tracking; Position controller; VIBRATION; INERTIA; MOMENT; SYSTEM; DRIVES;
D O I
10.1007/s10846-025-02244-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for identifying the mechanical parameters of flexible-joint robot axes using sinusoidal position tracking control. Accurate knowledge of mechanical parameters, such as inertia, coupling stiffness, and friction components, is important for designing effective controllers in robotic systems. These parameters are determined from integral values derived from the torque, speed, and position measurements of both the motor and load sides, leveraging the 90 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document} phase relationship between position, velocity, and acceleration terms. A robust sinusoidal position controller was developed, and the speed and position measurements of both the motor and load sides were utilized to implement the proposed method. When compared with parameters identified using standard methods, the proposed method shows an absolute percentage error ranging from 3.55% to 14.6% for the inertias and coupling stiffness, and 10.76% to 19% for the friction coefficients. The straightforward implementation and effectiveness of this method make it suitable for applications in industrial robotic arms, where precise control is essential for enhancing performance and operational efficiency.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Neural Network-Based Region Tracking Control for a Flexible-Joint Robot Manipulator
    Yu, Jinwei
    Wu, Mengyang
    Ji, Jinchen
    Yang, Weihua
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (02):
  • [22] Control of a Flexible-Joint Robot Using a Stable Adaptive Introspective CMAC
    Macnab, C. J. B.
    Razmi, M.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1546 - 1551
  • [23] Improved Output Tracking of a Flexible-Joint Arm using Neural Networks
    Macnab, C. J. B.
    NEURAL PROCESSING LETTERS, 2010, 32 (02) : 201 - 218
  • [24] Effective Motion Learning for a Flexible-Joint Robot Using Motor Babbling
    Takahashi, Kuniyuki
    Ogata, Tetsuya
    Yamada, Hiroki
    Tjandra, Hadi
    Sugano, Shigeki
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 2723 - 2728
  • [25] Improved Output Tracking of a Flexible-Joint Arm using Neural Networks
    C. J. B. Macnab
    Neural Processing Letters, 2010, 32 : 201 - 218
  • [26] Robust tracking control for a class of flexible-joint time-delay robots using only position measurements
    Chang, Yeong-Chan
    Wu, Ming-Fang
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (14) : 3336 - 3349
  • [27] Parameter identification for position-based robot hand tracking
    Lee, Jong Kwang
    Lee, Hyo Jik
    Park, Byung Suk
    Yoon, Ji Sup
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 678 - +
  • [28] Two-way fuzzy adaptive identification and control of a flexible-joint robot arm
    Gürkan, E
    Erkmen, I
    Erkmen, AM
    INFORMATION SCIENCES, 2002, 145 (1-2) : 13 - 43
  • [29] Hybrid force/position approach for flexible-joint robot with Fuzzy-Sliding mode control
    Amaini, Rafik
    Ferguene, Farid
    Toumi, Redouane
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON APPLIED SMART SYSTEMS (ICASS), 2018,
  • [30] Design and Control of a Hydraulic Simulator for a Flexible-Joint Robot
    Fotouhi, R.
    Salmasi, H.
    Dezfulian, S.
    Burton, R.
    ADVANCED ROBOTICS, 2009, 23 (06) : 655 - 679