Parameter Identification of a Flexible-Joint Robot Axis using Sinusoidal Position Tracking

被引:0
|
作者
Hafez, Ishaq [1 ]
Dhaouadi, Rached [1 ]
机构
[1] Univ City Sharjah, Amer Univ Sharjah, Dept Elect Engn, Sharjah 26666, U Arab Emirates
关键词
Mechanical parameter identification; Inertia; Coupling stiffness; Friction; Flexible-joint robot axes; Two-mass model; Sinusoidal tracking; Position controller; VIBRATION; INERTIA; MOMENT; SYSTEM; DRIVES;
D O I
10.1007/s10846-025-02244-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for identifying the mechanical parameters of flexible-joint robot axes using sinusoidal position tracking control. Accurate knowledge of mechanical parameters, such as inertia, coupling stiffness, and friction components, is important for designing effective controllers in robotic systems. These parameters are determined from integral values derived from the torque, speed, and position measurements of both the motor and load sides, leveraging the 90 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document} phase relationship between position, velocity, and acceleration terms. A robust sinusoidal position controller was developed, and the speed and position measurements of both the motor and load sides were utilized to implement the proposed method. When compared with parameters identified using standard methods, the proposed method shows an absolute percentage error ranging from 3.55% to 14.6% for the inertias and coupling stiffness, and 10.76% to 19% for the friction coefficients. The straightforward implementation and effectiveness of this method make it suitable for applications in industrial robotic arms, where precise control is essential for enhancing performance and operational efficiency.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Tip trajectory tracking of a flexible-joint robot using stable inversion
    Zhao, HC
    Chen, DG
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 1854 - 1858
  • [2] Vibration Suppression of a Flexible-Joint Robot Based on Parameter Identification and Fuzzy PID Control
    Ju, Jinyong
    Zhao, Yongrui
    Zhang, Chunrui
    Liu, Yufei
    ALGORITHMS, 2018, 11 (11)
  • [3] A TRACKING CONTROLLER FOR FLEXIBLE-JOINT ROBOTS USING ONLY LINK POSITION FEEDBACK
    NICOSIA, S
    TOMEI, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (05) : 885 - 890
  • [4] Optimal nonlinear position tracking control of a two-link flexible-joint robot manipulator
    Lahdhiri, T
    ElMaraghy, HA
    EXPERIMENTAL ROBOTICS V, 1998, 232 : 503 - 514
  • [5] Position Control and Vibration Suppression for Flexible-Joint Surgical Robot
    Zou, Shuizhong
    Pan, Bo
    Fu, Yili
    Guo, Shuxiang
    2018 3RD INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC), 2018, : 42 - 47
  • [6] Identification of single flexible-joint robot dynamics: a nonparametric approach
    Boukhebouz, Bassem
    Mercere, Guillaume
    Grossard, Mathieu
    Lamy, Xavier
    Laroche, Edouard
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 357 - 362
  • [7] Control of a flexible-joint robot using neural networks
    Zeman, V
    Patel, RV
    Khorasani, K
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1997, 5 (04) : 453 - 462
  • [8] Global Position-Feedback Tracking Control of Flexible-joint Robots
    Avila-Becerril, Sofia
    Loria, Antonio
    Panteley, Elena
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 3008 - 3013
  • [9] Design of a robust position feedback tracking controller for flexible-joint robots
    Chang, Y. -C.
    Yen, H. -M.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (02): : 351 - 363
  • [10] Simulation of grasping with a flexible-joint robot
    Kovecses, J
    Fenton, RG
    Cleghorn, WL
    RECENT ADVANCES IN ROBOT KINEMATICS, 1996, : 57 - 66