Simulating runoff changes and evaluating under climate change using CMIP6 data and the optimal SWAT model: a case study

被引:1
|
作者
Wang, Sai [1 ,2 ]
Zhang, Hong-Jin [1 ,3 ]
Wang, Tuan-Tuan [2 ,4 ]
Hossain, Sarmistha [5 ,6 ]
机构
[1] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Hainan, Peoples R China
[2] Hainan Univ, Sch Ecol & Environm, Haikou 570228, Hainan, Peoples R China
[3] Hainan Qingxiao Environm Testing Co Ltd, Sanya 572024, Hainan, Peoples R China
[4] Hainan Qianchao Ecol Technol Co Ltd, Sanya 572024, Hainan, Peoples R China
[5] Chittagong Univ Engn & Technol, Chittagong 4349, Bangladesh
[6] Islamic Univ, Coll Tech Engn, Najaf, Iraq
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Hydrological processes; Shared Socioeconomic pathways (SSPs); Deep Belief Network (DBN); Water management; SWAT model;
D O I
10.1038/s41598-024-74269-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study examines the influence of climate change on hydrological processes, particularly runoff, and how it affects managing water resources and ecosystem sustainability. It uses CMIP6 data to analyze changes in runoff patterns under different Shared Socioeconomic Pathways (SSP). This study also uses a Deep belief network (DBN) and a Modified Sparrow Search Optimizer (MSSO) to enhance the runoff forecasting capabilities of the SWAT model. DBN can learn complex patterns in the data and improve the accuracy of runoff forecasting. The meta-heuristic algorithm optimizes the models through iterative search processes and finds the optimal parameter configuration in the SWAT model. The Optimal SWAT Model accurately predicts runoff patterns, with high precision in capturing variability, a strong connection between projected and actual data, and minimal inaccuracy in its predictions, as indicated by an ENS score of 0.7152 and an R2 coefficient of determination of 0.8012. The outcomes of the forecasts illustrated that the runoff will decrease in the coming years, which could threaten the water source. Therefore, managers should manage water resources with awareness of these conditions.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Mapping the Distribution of Curculio davidi Fairmaire 1878 under Climate Change via Geographical Data and the MaxEnt Model (CMIP6)
    Wu, Junhao
    Wei, Xinju
    Wang, Zhuoyuan
    Peng, Yaqin
    Liu, Biyu
    Zhuo, Zhihang
    INSECTS, 2024, 15 (08)
  • [32] Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6
    Carvalho, D.
    Rocha, A.
    Costoya, X.
    DeCastro, M.
    Gomez-Gesteira, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 151
  • [33] Climate change scenario in Bangladesh: historical data analysis and future projection based on CMIP6 model
    Jihan, Md. Akik Tanjil
    Popy, Shamsunnahar
    Kayes, Shafiul
    Rasul, Golam
    Maowa, Al Shafi
    Rahman, Md. Mustafijur
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [34] Changes in Runoff in the Source Region of the Yellow River Basin Based on CMIP6 Data under the Goal of Carbon Neutrality
    Liu, Yihua
    Liu, Lyuliu
    Li, Lin
    Li, Hongmei
    Xu, Hongmei
    Yang, Jing
    Tao, Shiyin
    Zhu, Baowen
    WATER, 2023, 15 (13)
  • [35] Evaluating the Effects of Climate Change on Thermal Bioclimatic Indices in a Tropical Region Using Climate Projections from the Bias-Corrected CMIP6 Model
    Mohammad Kamruzzaman
    H. M. Touhidul Islam
    Sharif Ahmed
    Debu Kumar Bhattacharjya
    Md. Shah Kamal Khan
    Golam Iftekhar Mahmud
    Mansour Almazroui
    Shamsuddin Shahid
    Earth Systems and Environment, 2023, 7 : 699 - 722
  • [36] Projected changes in Caspian sea level under CMIP6 climate change scenarios: probabilistic and deterministic approaches
    Hoseini, S. Mahya
    Soltanpour, Mohsen
    Zolfaghari, Mohammad R.
    CLIMATE DYNAMICS, 2025, 63 (01)
  • [37] Analysis of climate change scenarios using CMIP6 models in Pernambuco, Brazil
    Araujo, Diego Cezar dos Santos
    Montenegro, Suzana Maria Gico Lima
    da Silva, Samara Fernanda
    de Farias, Vanine Elane Menezes
    Rodrigues, Arivania Bandeira
    REVISTA BRASILEIRA DE CIENCIAS AMBIENTAIS, 2024, 59
  • [38] Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models
    Paris Rivera
    Modeling Earth Systems and Environment, 2024, 10 : 2031 - 2049
  • [39] Evaluating the Effects of Climate Change on Thermal Bioclimatic Indices in a Tropical Region Using Climate Projections from the Bias-Corrected CMIP6 Model
    Kamruzzaman, Mohammad
    Islam, H. M. Touhidul
    Ahmed, Sharif
    Bhattacharjya, Debu Kumar
    Khan, Md. Shah Kamal
    Mahmud, Golam Iftekhar
    Almazroui, Mansour
    Shahid, Shamsuddin
    EARTH SYSTEMS AND ENVIRONMENT, 2023, 7 (04) : 699 - 722
  • [40] Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails
    Catalano, A. J.
    Loikith, P. C.
    Neelin, J. D.
    ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (07)