Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden-Popper Perovskite Solar Cells

被引:3
|
作者
Liu, Pengyun [1 ]
Li, Xuejin [1 ]
Cai, Tonghui [1 ]
Xing, Wei [1 ]
Yang, Naitao [2 ]
Arandiyan, Hamidreza [3 ]
Shao, Zongping [4 ]
Wang, Shaobin [5 ]
Liu, Shaomin [4 ,6 ]
机构
[1] China Univ Petr East China, Sch Mat Sci & Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Peoples R China
[3] RMIT Univ, Ctr Appl Mat & Ind Chem CAMIC, Sch Sci, Melbourne, Vic 3000, Australia
[4] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn WASM MECE, Perth, WA 6102, Australia
[5] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[6] Great Bay Univ, Sch Engn, Dongguan 523000, Peoples R China
基金
美国国家科学基金会;
关键词
Ruddlesden-Popper perovskites; Low-dimensional perovskite solar cells; Organic spacers; Molecular structure; Design strategies; HIGH-EFFICIENCY; AROMATIC FORMAMIDINIUM; CRYSTAL ORIENTATION; HYBRID PEROVSKITES; CATION; BENZYLAMMONIUM; PASSIVATION; ISOMER;
D O I
10.1007/s40820-024-01500-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic spacers in Ruddlesden-Popper (RP) perovskites play a vital role in tuning crystallization, charge transport and photovoltaic performance for RP perovskite solar cells (PSCs).Fundamental understanding of the functions of molecular structure of organic spacers is the prerequisite to design high-performance PSCs.This review proposes practical design strategies in seeking RP molecular structure to maximize its photovoltaic performance for PSCs. Layer-structured Ruddlesden-Popper (RP) perovskites (RPPs) with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell (PSC) technology. However, two-dimensional (2D) or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy, blocked charge transport and poor film quality, which restrict their photovoltaic performance. Fortunately, these issues can be readily resolved by rationally designing spacer cations of RPPs. This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications. We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics, charge transporting ability and stability of RPPs. Then we brought three aspects to attention for designing organic spacers. Finally, we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs. These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
引用
收藏
页数:44
相关论文
共 50 条
  • [21] Anion regulation engineering for efficient Ruddlesden-Popper inverted perovskite solar cells
    Li, Jiawen
    Wang, Zijun
    Yang, Genjie
    Yu, Junsheng
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 232
  • [22] Tuning the Energetic Landscape of Ruddlesden-Popper Perovskite Films for Efficient Solar Cells
    Shao, Shuyan
    Duim, Herman
    Wang, Qingqian
    Xu, Bowei
    Dong, Jingjin
    Adjokatse, Sampson
    Blake, Graeme R.
    Protesescu, Loredana
    Portale, Giuseppe
    Hou, Jianhui
    Saba, Michele
    Loi, Maria Antonietta
    ACS ENERGY LETTERS, 2020, 5 (01) : 39 - 46
  • [23] Interlayer Interaction Enhancement in Ruddlesden-Popper Perovskite Solar Cells toward High Efficiency and Phase Stability
    Long, Mingzhu
    Zhang, Tiankai
    Chen, Dongcheng
    Qin, Minchao
    Chen, Zefeng
    Gong, Li
    Lu, Xinhui
    Xie, Fangyan
    Xie, Weiguang
    Chen, Jian
    Xu, Jianbin
    ACS ENERGY LETTERS, 2019, 4 (05): : 1025 - 1033
  • [24] Solvent Engineering for High-Performance Two-Dimensional Ruddlesden-Popper CsPbI3 Solar Cells
    Chen, Haiqiang
    Lei, Yutian
    Yao, Huanhuan
    Li, Zhizai
    Peng, Guoqiang
    Zhou, Xufeng
    Wang, Haoxu
    Wang, Qian
    Jin, Zhiwen
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 11807 - 11814
  • [25] High-performance Ruddlesden-Popper two-dimensional perovskite solar cells using integrated electron transport materials of tin oxide and indacenodithiophene
    Liu, Zhihai
    Wang, Lei
    Zhao, Hao
    Wei, Yibin
    Xie, Xiaoyin
    Chen, Ping
    MATERIALS ADVANCES, 2023, 4 (16): : 3551 - 3558
  • [26] Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction
    Ren, Hui
    Yu, Shidong
    Chao, Lingfeng
    Xia, Yingdong
    Sun, Yuanhui
    Zuo, Shouwei
    Li, Fan
    Niu, Tingting
    Yang, Yingguo
    Ju, Huanxin
    Li, Bixin
    Du, Haiyan
    Gao, Xingyu
    Zhang, Jing
    Wang, Jianpu
    Zhang, Lijun
    Chen, Yonghua
    Huang, Wei
    NATURE PHOTONICS, 2020, 14 (03) : 154 - +
  • [27] Efficient and Stable Ruddlesden-Popper Perovskite Solar Cell with Tailored Interlayer Molecular Interaction
    CHEN Yonghua
    材料导报 , 2020, (07) : 7001 - 7002
  • [28] Elucidation of the Formation Mechanism of Highly Oriented Multiphase Ruddlesden-Popper Perovskite Solar Cells
    Jang, Gyumin
    Ma, Sunihl
    Kwon, Hyeok-Chan
    Goh, Sukyoung
    Ban, Hayeon
    Kim, Joon Soo
    Kim, Ji-Hee
    Moon, Jooho
    ACS ENERGY LETTERS, 2021, 6 (01) : 249 - 260
  • [29] Furfurylammonium as a Spacer for Efficient 2D Ruddlesden-Popper Perovskite Solar Cells
    Zheng, Yi
    Chen, Shan-Ci
    Ma, Yunlong
    Zheng, Qingdong
    SOLAR RRL, 2022, 6 (08)
  • [30] A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden-Popper Perovskite Solar Cells
    Li, Zhimin
    Liu, Ning
    Meng, Ke
    Liu, Zhou
    Hu, Youdi
    Xu, Qaofei
    Wang, Xiao
    Li, Shunde
    Cheng, Lei
    Chen, Gang
    NANO LETTERS, 2019, 19 (08) : 5237 - 5245