Some Characterizations for Partial Classical Correlation States in Multipartite Quantum Systems

被引:0
|
作者
Yinzhu Wang [1 ]
Lihua Hao [1 ]
Chen Cheng [1 ]
Yanjing Sun [1 ]
Ruifen Ma [1 ]
机构
[1] Taiyuan University of Science and Technology,School of Applied Science
关键词
Multipartite quantum systems; -classical correlation states; Fully classical correlation states; Correlation measure; Quantum channel;
D O I
10.1007/s10773-024-05815-4
中图分类号
学科分类号
摘要
One crucial problem is to characterize and quantify the correlations in bipartite or multipartite states in the theory of quantum information. In this paper, we consider m-partite composite quantum systems H=H1⊗H2⊗⋯⊗Hm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=H_{1}\otimes H_{2}\otimes \cdots \otimes H_{m}$$\end{document} with dimH<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim H<+\infty $$\end{document}. We first introduce a concept of k-classical correlation states (1≤k≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le m$$\end{document})(for short single classical correlation states when k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}, and fully classical correlation states when k=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=m$$\end{document}); Next we give some mathematical representation for partial classical correlation states and a necessary condition for fully-classical correlation states; Finally, we present a correlation measure for k-classical correlation states based on the angle between quantum states, and prove that this correlation measure is well-defined, which possesses the basic physical properties of correlation measure.
引用
收藏
相关论文
共 50 条
  • [11] Relations between the quantum correlation entropy and quantum discord for X-states in multipartite systems
    Xiang Zhou
    Zhu-Jun Zheng
    The European Physical Journal Plus, 137
  • [12] Entanglement and quantum correlation measures for quantum multipartite mixed states
    Vesperini, Arthur
    Bel-Hadj-Aissa, Ghofrane
    Franzosi, Roberto
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [13] Restrictions on shareability of classical correlations for random multipartite quantum states
    Roy, Saptarshi
    Mal, Shiladitya
    Sen, Aditi
    PHYSICAL REVIEW A, 2021, 103 (05)
  • [14] The generalized partial transposition criterion for separability of multipartite quantum states
    Chen, K
    Wu, LA
    PHYSICS LETTERS A, 2002, 306 (01) : 14 - 20
  • [15] Separability of multipartite quantum states with strong positive partial transpose
    Qian, Lilong
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [16] Exponentially many entanglement and correlation constraints for multipartite quantum states
    Eltschka, Christopher
    Huber, Felix
    Guehne, Otfried
    Siewert, Jens
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [17] Monogamy relations of all quantum correlation measures for multipartite quantum systems
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    OPTICS COMMUNICATIONS, 2019, 446 : 39 - 43
  • [18] Multipartite quantum and classical correlations in symmetric n-qubit mixed states
    Gian Luca Giorgi
    Steve Campbell
    Quantum Information Processing, 2016, 15 : 4599 - 4611
  • [19] Detecting multipartite classical states and their resemblances
    Chen, Lin
    Chitambar, Eric
    Modi, Kavan
    Vacanti, Giovanni
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [20] The classification of multipartite quantum correlation
    Szalay, Szilard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (48)