共 50 条
Gaussian Poincare Inequalities on the Half-Space with Singular Weights
被引:0
|作者:
Negro, L.
[1
]
Spina, C.
[1
]
机构:
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, CP 193, I-73100 Lecce, Italy
关键词:
Degenerate elliptic operators;
Boundary degeneracy;
Rellich-Kondrachov theorems;
Weighted Poincare inequalities;
Kernel estimates;
EXTENSION PROBLEM;
REGULARITY;
THEOREM;
PROOF;
D O I:
10.1007/s00009-024-02788-w
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove Rellich-Kondrachov-type theorems and weighted Poincare inequalities on the half-space R-+(N+1) = {z = (x, y) : x is an element of R-N, y > 0} endowed with the weighted Gaussian measure mu := y (c) e(-a|z|2)dz where c + 1 > 0 and a > 0. We prove that for some positive constant C > 0, one has ||u-u(-)||(2)(L mu)(R+(N+1)) <= C||del u||(N+1)(L mu 2(R+)),for all u is an element of H-mu(1)(R-+(N+1)), where (u) over bar = 1/mu(R-+(N+1))integral(N+1)(R+) u d mu(z). Besides this, we also consider the local case of bounded domains of R-+(N+1) where the measure mu is y (c) dz.
引用
收藏
页数:14
相关论文