We discuss the kinetic theory of stellar systems and two-dimensional vortices and stress their analogies. We recall the derivation of the Landau and Lenard–Balescu equations from the Klimontovich formalism. These equations take into account two-body correlations and are valid at the order 1/N, where N is the number of particles in the system. They have the structure of a Fokker–Planck equation involving a diffusion term and a drift term. The systematic drift of a vortex is the counterpart of the dynamical friction experienced by a star. At equilibrium, the diffusion and the drift terms balance each other establishing the Boltzmann distribution of statistical mechanics. We discuss the problem of kinetic blocking in certain cases and how it can be solved at the order 1/N2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1/N^2$$\end{document} by the consideration of three-body correlations. We also consider the behaviour of the system close to the critical point following a recent suggestion by Hamilton and Heinemann (2023). We present a simple calculation, valid for spatially homogeneous systems with long-range interactions described by the Cauchy distribution, showing how the consideration of the Landau modes regularizes the divergence of the friction by polarization at the critical point. We mention, however, that fluctuations may be very important close to the critical point and that deterministic kinetic equations for the mean distribution function (such as the Landau and Lenard–Balescu equations) should be replaced by stochastic kinetic equations.
机构:
Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87544 USALos Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87544 USA
Marciante, M.
Murillo, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USALos Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87544 USA
机构:
Ecole Normale Super, CNRS, Dept Math & Applicat, UMR 8553, F-75230 Paris 05, FranceEcole Normale Super, CNRS, Dept Math & Applicat, UMR 8553, F-75230 Paris 05, France
Bodineau, T.
Derrida, B.
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super, Phys Stat Lab, F-75231 Paris, FranceEcole Normale Super, CNRS, Dept Math & Applicat, UMR 8553, F-75230 Paris 05, France
Derrida, B.
Lebowitz, Joel L.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USAEcole Normale Super, CNRS, Dept Math & Applicat, UMR 8553, F-75230 Paris 05, France
机构:
Univ Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, F-67000 Strasbourg, France
Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, EnglandUniv Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, F-67000 Strasbourg, France
Downing, C. A.
Portnoi, M. E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England
Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078970 Natal, RN, BrazilUniv Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, F-67000 Strasbourg, France