YOLOv8-TDD: An Optimized YOLOv8 Algorithm for Targeted Defect Detection in Printed Circuit Boards

被引:1
|
作者
Yunpeng, Gao [1 ]
Rui, Zhang [1 ]
Mingxu, Yang [2 ]
Sabah, Fahad [3 ]
机构
[1] Beijing Inst Grap Commun, Dept Mech & Elect Engn, Beijing 102600, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Dept Mech & Elect Engn, Beijing 100192, Peoples R China
[3] Beijing Univ Technol, Dept Informat, Beijing 100124, Peoples R China
关键词
Defect Detection; Computer vision; Printed Circuit Boards; YOLO; Deep Learning; Attention Mechanism;
D O I
10.1007/s10836-024-06146-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An enhanced approach for detecting defects in Printed Circuit Boards (PCBs) using a significantly improved version of the YOLOv8 algorithm is proposed in this research, the proposed method is referred to as YOLOv8-TDD (You Only Look Once Version8-Targeted Defect Detection). This novel approach integrates cutting-edge components such as Swin Transformers, Dynamic Snake Convolution (DySnakeConv), and Biformer within the YOLOv8 architecture, aiming to address and overcome the limitations associated with traditional PCB inspection methods. The YOLOv8-TDD adaptation incorporates Swin Transformers to leverage hierarchical feature processing with shifted windows, enhancing the model's efficiency and capability in capturing complex image details. Dynamic Snake Convolution is implemented to dynamically adapt filter responses based on the input feature maps, offering tailored feature extraction that is highly responsive to the varied textures and defects in PCBs. The Biformer, with bidirectional processing capability, enriches the model's contextual understanding, providing a comprehensive analysis of the PCB images to pinpoint defects more accurately. Experimental results demonstrate that YOLOv8-TDD model, achieves a precision of 97.9%, a mean Average Precision (mAP0.5) of 95.71%. This enhanced model offers significant potential for practical applications in PCB manufacturing, promising to elevate quality control standards through more reliable defect detection.
引用
收藏
页码:645 / 656
页数:12
相关论文
共 50 条
  • [41] Steel surface defect detection based on improved YOLOv8
    Lu, Xin-ya
    Qu, Mei-xia
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [42] Leather Defect Detection Based on Improved YOLOv8 Model
    Peng, Zirui
    Zhang, Chen
    Wei, Wei
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [43] Defect Detection of Photovoltaic Cells Based on Improved YOLOv8
    Zhou Ying
    Yan Yuze
    Chen Haiyong
    Pei Shenghu
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [44] YOLOv8 Crack Defect Detection Algorithm Based on Multi-Scale Features
    Zhao, Baiting
    Cheng, Ruifeng
    Jia, Xiaofen
    Computer Engineering and Applications, 2024, 60 (22) : 261 - 270
  • [45] FMR-YOLO: An improved YOLOv8 algorithm for steel surface defect detection
    Ni, Yongjing
    Wu, Qi
    Zhang, Xiuqing
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [46] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [47] YOLO-ADS: An Improved YOLOv8 Algorithm for Metal Surface Defect Detection
    Gui, Zili
    Geng, Jianping
    ELECTRONICS, 2024, 13 (16)
  • [48] A Single-Stage Photovoltaic Module Defect Detection Method Based on Optimized YOLOv8
    Gao, Yihong
    Pang, Chengxin
    Zeng, Xinhua
    Jiang, Pengyi
    IEEE ACCESS, 2025, 13 : 27805 - 27817
  • [49] TL-YOLOv8: A Blueberry Fruit Detection Algorithm Based on Improved YOLOv8 and Transfer Learning
    Gai, Rongli
    Liu, Yong
    Xu, Guohui
    IEEE ACCESS, 2024, 12 : 86378 - 86390
  • [50] YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8
    Wang, Hai
    Liu, Chenyu
    Cai, Yingfeng
    Chen, Long
    Li, Yicheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16