Nowcasting GDP using machine learning methods

被引:0
|
作者
Kant, Dennis [1 ]
Pick, Andreas [1 ]
De Winter, Jasper [2 ]
机构
[1] Erasmus Univ, Rotterdam, Netherlands
[2] De Nederlandsche Bank, Amsterdam, Netherlands
关键词
Factor models; Forecasting competition; Machine learning methods; Nowcasting; C32; C53; E37; FACTOR MODEL; MIDAS; SELECTION;
D O I
10.1007/s10182-024-00515-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper compares the ability of several econometric and machine learning methods to nowcast GDP in (pseudo) real-time. The analysis takes the example of Dutch GDP over the period 1992Q1-2018Q4 using a broad data set of monthly indicators. It discusses the forecast accuracy but also analyzes the use of information from the large data set of macroeconomic and financial predictors. We find that, on average, the random forest provides the most accurate forecast and nowcasts, whilst the dynamic factor model provides the most accurate backcasts.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [21] Nowcasting the New Turkish GDP
    Soybilgen, Baris
    Yazgan, Ege
    ECONOMICS BULLETIN, 2018, 38 (02): : 1083 - +
  • [22] Nowcasting Japan’s GDP
    Fumio Hayashi
    Yuta Tachi
    Empirical Economics, 2023, 64 : 1699 - 1735
  • [23] A machine learning model for nowcasting epidemic incidence
    Sahai, Saumya Yashmohini
    Gurukar, Saket
    KhudaBukhsh, Wasiur R.
    Parthasarathy, Srinivasan
    Rempala, Grzegorz A.
    MATHEMATICAL BIOSCIENCES, 2022, 343
  • [24] Nowcasting GDP: An Application to Portugal
    Assuncao, Joao B.
    Fernandes, Pedro Afonso
    FORECASTING, 2022, 4 (03): : 717 - 731
  • [25] A nowcasting model of industrial production using alternative data and machine learning approaches
    Furukawa, Kakuho
    Hisano, Ryohei
    Minoura, Yukio
    Yagi, Tomoyuki
    JAPAN AND THE WORLD ECONOMY, 2024, 71
  • [26] Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
    Leinonen, Jussi
    Hamann, Ulrich
    Germann, Urs
    Mecikalski, John R.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (02) : 577 - 597
  • [27] Using Survey Information for Improving the Density Nowcasting of US GDP
    Cakmakli, Cem
    Demircan, Hamza
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) : 667 - 682
  • [28] The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting
    Camporeale, E.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (08): : 1166 - 1207
  • [29] GNSS-Based Machine Learning Storm Nowcasting
    Los, Marcelina
    Smolak, Kamil
    Guerova, Guergana
    Rohm, Witold
    REMOTE SENSING, 2020, 12 (16)
  • [30] Nowcasting Turkish GDP and news decomposition
    Modugno, Michele
    Soybilgen, Baris
    Yazgan, Ege
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (04) : 1369 - 1384