Nowcasting GDP using machine learning methods

被引:0
|
作者
Kant, Dennis [1 ]
Pick, Andreas [1 ]
De Winter, Jasper [2 ]
机构
[1] Erasmus Univ, Rotterdam, Netherlands
[2] De Nederlandsche Bank, Amsterdam, Netherlands
关键词
Factor models; Forecasting competition; Machine learning methods; Nowcasting; C32; C53; E37; FACTOR MODEL; MIDAS; SELECTION;
D O I
10.1007/s10182-024-00515-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper compares the ability of several econometric and machine learning methods to nowcast GDP in (pseudo) real-time. The analysis takes the example of Dutch GDP over the period 1992Q1-2018Q4 using a broad data set of monthly indicators. It discusses the forecast accuracy but also analyzes the use of information from the large data set of macroeconomic and financial predictors. We find that, on average, the random forest provides the most accurate forecast and nowcasts, whilst the dynamic factor model provides the most accurate backcasts.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [1] Benchmarking econometric and machine learning methodologies in nowcasting GDP
    Hopp, Daniel
    EMPIRICAL ECONOMICS, 2024, 66 (05) : 2191 - 2247
  • [2] Benchmarking econometric and machine learning methodologies in nowcasting GDP
    Daniel Hopp
    Empirical Economics, 2024, 66 : 2191 - 2247
  • [3] Nowcasting GDP using machine-learning algorithms: A real-time assessment
    Richardson, Adam
    Mulder, Thomas van Florenstein
    Vehbi, Tugrul
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 941 - 948
  • [4] GDP nowcasting: A machine learning and remote sensing data-based approach for Bolivia
    Bolivar, Osmar
    LATIN AMERICAN JOURNAL OF CENTRAL BANKING, 2024, 5 (03):
  • [5] Nowcasting GDP growth using data reduction methods: Evidence for the French economy
    Darne, Olivier
    Charles, Amelie
    ECONOMICS BULLETIN, 2020, 40 (03):
  • [6] Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms
    Zhang, Qin
    Ni, He
    Xu, Hao
    ECONOMIC MODELLING, 2023, 122
  • [7] Methods for backcasting, nowcasting and forecasting using factor-MIDAS: With an application to Korean GDP
    Kim, Hyun Hak
    Swanson, Norman R.
    JOURNAL OF FORECASTING, 2018, 37 (03) : 281 - 302
  • [8] Machine Learning Nowcasting of PV Energy Using Satellite Data
    Catalina, Alejandro
    Torres-Barran, Alberto
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 97 - 115
  • [9] Machine Learning Nowcasting of PV Energy Using Satellite Data
    Alejandro Catalina
    Alberto Torres-Barrán
    Carlos M. Alaíz
    José R. Dorronsoro
    Neural Processing Letters, 2020, 52 : 97 - 115
  • [10] Cloud-to-Ground lightning nowcasting using Machine Learning
    La Fata, Alice
    Amato, Federico
    Bernardi, Marina
    D'Andrea, Mirko
    Procopio, Renato
    Fiori, Elisabetta
    2021 35TH INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP) AND XVI INTERNATIONAL SYMPOSIUM ON LIGHTNING PROTECTION (SIPDA), 2021,