Harnessing multimodal approaches for depression detection using large language models and facial expressions

被引:0
|
作者
Misha Sadeghi [1 ]
Robert Richer [1 ]
Bernhard Egger [2 ]
Lena Schindler-Gmelch [3 ]
Lydia Helene Rupp [3 ]
Farnaz Rahimi [1 ]
Matthias Berking [3 ]
Bjoern M. Eskofier [1 ]
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in Biomedical Engineering (AIBE)
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),Chair of Visual Computing (LGDV), Department of Computer Science
[3] Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),Chair of Clinical Psychology and Psychotherapy (KliPs)
[4] Institute of AI for Health,Translational Digital Health Group
[5] Helmholtz Zentrum München - German Research Center for Environmental Health,undefined
来源
关键词
D O I
10.1038/s44184-024-00112-8
中图分类号
学科分类号
摘要
Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression severity using the E-DAIC dataset. We employ Large Language Models (LLMs) to extract depression-related indicators from interview transcripts, utilizing the Patient Health Questionnaire-8 (PHQ-8) score to train the prediction model. Additionally, facial data extracted from video frames is integrated with textual data to create a multimodal model for depression severity prediction. We evaluate three approaches: text-based features, facial features, and a combination of both. Our findings show the best results are achieved by enhancing text data with speech quality assessment, with a mean absolute error of 2.85 and root mean square error of 4.02. This study underscores the potential of automated depression detection, showing text-only models as robust and effective while paving the way for multimodal analysis.
引用
收藏
相关论文
共 50 条
  • [41] Call for papers: Special issue on biomedical multimodal large language models- novel approaches and applications
    Bian, Jiang
    Peng, Yifan
    Mendonca, Eneida
    Banerjee, Imon
    Xu, Hua
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 157
  • [42] Code Detection for Hardware Acceleration Using Large Language Models
    Martinez, Pablo Antonio
    Bernabe, Gregorio
    Garcia, Jose Manuel
    IEEE ACCESS, 2024, 12 : 35271 - 35281
  • [43] Computing Architecture for Large-Language Models (LLMs) and Large Multimodal Models (LMMs)
    Liang, Bor-Sung
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD 2024, 2024, : 233 - 234
  • [44] Safety of Large Language Models in Addressing Depression
    Heston, Thomas F.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (12)
  • [45] Multimodal and Multiresolution Depression Detection from Speech and Facial Landmark Features
    Nasir, Md
    Jati, Arindam
    Shivakumar, Prashanth Gurunath
    Chakravarthula, Sandeep Nallan
    Georgiou, Panayiotis
    PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP ON AUDIO/VISUAL EMOTION CHALLENGE (AVEC'16), 2016, : 43 - 50
  • [46] Emotions Detection Using Facial Expressions Recognition and EEG
    Matlovic, Tomas
    Gaspar, Peter
    Moro, Robert
    Simko, Jakub
    Bielikova, Maria
    2016 11TH INTERNATIONAL WORKSHOP ON SEMANTIC AND SOCIAL MEDIA ADAPTATION AND PERSONALIZATION (SMAP), 2016, : 18 - 23
  • [47] The Automatic Detection of Cognition Using EEG and Facial Expressions
    El Kerdawy, Mohamed
    El Halaby, Mohamed
    Hassan, Afnan
    Maher, Mohamed
    Fayed, Hatem
    Shawky, Doaa
    Badawi, Ashraf
    SENSORS, 2020, 20 (12) : 1 - 32
  • [48] HARNESSING TASK OVERLOAD FOR SCALABLE JAILBREAK ATTACKS ON LARGE LANGUAGE MODELS
    Dong, Yiting
    Shen, Guobin
    Zhao, Dongcheng
    He, Xiang
    Zeng, Yi
    arXiv,
  • [49] Harnessing the potential of large language models in medical education: promise and pitfalls
    Benitez, Trista M.
    Xu, Yueyuan
    Boudreau, J. Donald
    Kow, Alfred Wei Chieh
    Bello, Fernando
    Phuoc, Le Van
    Wang, Xiaofei
    Sun, Xiaodong
    Leung, Gilberto Ka-Kit
    Lan, Yanyan
    Wang, Yaxing
    Cheng, Davy
    Tham, Yih-Chung
    Wong, Tien Yin
    Chung, Kevin C.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (03) : 776 - 783
  • [50] Harnessing the Power of Large Language Models for Automated Code Generation and Verification
    Antero, Unai
    Blanco, Francisco
    Onativia, Jon
    Salle, Damien
    Sierra, Basilio
    ROBOTICS, 2024, 13 (09)