Congruence-Simple Acts Over Completely Simple Semigroups

被引:0
|
作者
I. B. Kozhukhov [1 ]
K. A. Kolesnikova [2 ]
机构
[1] Lomonosov Moscow State University,
[2] National Research University of Electronic Technology,undefined
关键词
D O I
10.1007/s10958-024-07366-9
中图分类号
学科分类号
摘要
We prove that an act X over a completely simple semigroup S=MG,I,Λ,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\mathcal{M}\left(G,I,\Lambda ,P\right)$$\end{document} is congruence-simple (i.e., it has no nontrivial congruences) if and only if one of the following conditions holds: (1) |X| = 1; (2) |X| = 2 and |XS| = 1; (3) X = {z1, z2}, where z1 and z2 are zeros; (4) X ≅ R/ρ, where R is a minimal right ideal of the semigroup S and ρ is a maximal proper congruence of the right ideal R, which is considered as an act over S. We describe these congruences.
引用
收藏
页码:501 / 507
页数:6
相关论文
共 50 条
  • [31] Commutators in completely simple semigroups
    Radovic, Jelena
    Mudrinski, Nebojsa
    SEMIGROUP FORUM, 2025, 110 (01) : 216 - 228
  • [32] Residuated Completely Simple Semigroups
    Blyth, T. S.
    Pinto, G. A.
    ALGEBRA COLLOQUIUM, 2014, 21 (02) : 181 - 194
  • [33] Free completely J(ℓ)-simple Semigroups
    Jun Ying Guo
    Xiao Jiang Guo
    Juan Ying Ding
    Acta Mathematica Sinica, English Series, 2015, 31 : 1086 - 1096
  • [34] BASIC REPRESENTATIONS OF COMPLETELY SIMPLE SEMIGROUPS
    CLIFFORD, AH
    AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (02) : 430 - 434
  • [35] FREE INVOLUTORIAL COMPLETELY SIMPLE SEMIGROUPS
    GERHARD, JA
    PETRICH, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (02): : 271 - 295
  • [36] Generalized inflations of completely simple semigroups
    Wang, Qiang
    Wismath, Shelly L.
    ALGEBRA COLLOQUIUM, 2007, 14 (01) : 103 - 116
  • [37] On the Cayley graphs of completely simple semigroups
    Luo, Yanfeng
    Hao, Yifei
    Clarke, Graham T.
    SEMIGROUP FORUM, 2011, 82 (02) : 288 - 295
  • [38] On the Cayley graphs of completely simple semigroups
    Yanfeng Luo
    Yifei Hao
    Graham T. Clarke
    Semigroup Forum, 2011, 82 : 288 - 295
  • [39] On the Cayley Graphs of Completely Simple Semigroups
    Khosravi, Bahman
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (02) : 741 - 749
  • [40] SUBALGEBRA LATTICES OF COMPLETELY SIMPLE SEMIGROUPS
    JOHNSTON, KG
    SEMIGROUP FORUM, 1984, 29 (1-2) : 109 - 121