Congruence-Simple Acts Over Completely Simple Semigroups

被引:0
|
作者
I. B. Kozhukhov [1 ]
K. A. Kolesnikova [2 ]
机构
[1] Lomonosov Moscow State University,
[2] National Research University of Electronic Technology,undefined
关键词
D O I
10.1007/s10958-024-07366-9
中图分类号
学科分类号
摘要
We prove that an act X over a completely simple semigroup S=MG,I,Λ,P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\mathcal{M}\left(G,I,\Lambda ,P\right)$$\end{document} is congruence-simple (i.e., it has no nontrivial congruences) if and only if one of the following conditions holds: (1) |X| = 1; (2) |X| = 2 and |XS| = 1; (3) X = {z1, z2}, where z1 and z2 are zeros; (4) X ≅ R/ρ, where R is a minimal right ideal of the semigroup S and ρ is a maximal proper congruence of the right ideal R, which is considered as an act over S. We describe these congruences.
引用
收藏
页码:501 / 507
页数:6
相关论文
共 50 条
  • [1] Projective and Injective Acts Over Completely Simple Semigroups
    Kozhukhov I.B.
    Petrikov A.O.
    Journal of Mathematical Sciences, 2018, 233 (5) : 687 - 694
  • [2] CONGRUENCE NETWORKS FOR COMPLETELY SIMPLE SEMIGROUPS
    PETRICH, M
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 : 243 - 266
  • [3] Congruence-Simple Semirings
    Robert El Bashir
    Tomas Kepka
    Semigroup Forum, 2007, 75 : 588 - 608
  • [4] Congruence-simple semirings
    El Bashir, Robert
    Kepka, Tomas
    SEMIGROUP FORUM, 2007, 75 (03) : 589 - 609
  • [5] Congruence-simple subsemirings of ℚ+
    Vítězslav Kala
    Miroslav Korbelář
    Semigroup Forum, 2010, 81 : 286 - 296
  • [6] 2 CONGRUENCE LATTICES OF COMPLETELY SIMPLE SEMIGROUPS
    PETRICH, M
    MONATSHEFTE FUR MATHEMATIK, 1993, 116 (3-4): : 287 - 298
  • [7] A CONSTRUCTION OF CONGRUENCE-SIMPLE SEMIRINGS
    Batikova, Barbora
    Kepka, Tomas
    Nemec, Petr
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 633 - 655
  • [8] On finite congruence-simple semirings
    Monico, C
    JOURNAL OF ALGEBRA, 2004, 271 (02) : 846 - 854
  • [9] Congruence-simple matrix semirings
    Kala, Vitezslav
    Kepka, Tomas
    Korbelar, Miroslav
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (03) : 407 - 424
  • [10] EQUATIONS OVER COMPLETELY SIMPLE SEMIGROUPS
    Shevlyakov, A. N.
    ALGEBRA AND LOGIC, 2015, 53 (06) : 520 - 524