The sustainability of recycled polylactic acid via fused filament fabrication: environmental impacts across cycles

被引:0
|
作者
Sibille, Alice [1 ]
Ashkbous, Maryam [2 ]
Doublet, Laurie Helene Christine [1 ]
Farahani, Rouhollah Dermanaki [1 ]
Binet, Flavien [3 ]
Bodkhe, Sampada [1 ]
Therriault, Daniel [1 ]
Keivanpour, Samira [2 ]
机构
[1] Polytech Montreal, Dept Mech Engn, Lab Multiscale Mech LM2, Montreal, PQ H3T 1J4, Canada
[2] Polytech Montreal, Dept Math & Ind Engn, Montreal, PQ H3T 1J4, Canada
[3] Canada Int Reference Ctr Life Cycle Assessment & S, Montreal, PQ H3V 1A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Life cycle assessment (LCA); Additive manufacturing; Circular economy; Polylactic acid (PLA); Environmental impact;
D O I
10.1007/s00170-025-15281-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recycling material for manufacturing new products is a promising approach toward sustainability and circular economy. Recycled polylactic acid (PLA), a thermoplastic, lightweight, and biodegradable polymer, is desirable for sustainable production in the automotive industry, medical applications, and aerospace industry specifically for non-load-bearing components. Developing PLA-based products through additive manufacturing (AM), particularly fused filament fabrication (FFF), has advantages over conventional manufacturing methods such reduced material waste, lower cost, and rapid prototyping. However, the environmental impact of recycled PLA through its entire life cycle has not been assessed yet. In this study, we investigated the cradle-to-cradle life cycle assessment (LCA) of PLA through five mechanical recycling cycles. The functional unit is 1 kg of PLA fabricated into ASTM D638 Type 1 specimens through FFF and recycled in a three-step approach: (1) mechanical grinding, (2) extrusion, and (3) FFF at the laboratory scale. Impact World + methodology is employed to calculate two midpoint indicators: climate change and fossil and nuclear energy, and one endpoint indicator: ecosystem quality. Our research results show an inverse relationship between the number of recycling cycles and environmental impact, suggesting a reduction in environmental burden with increased recycling. The highest impact for climate change in the fifth recycling cycle is associated with power consumption of about 58% followed by 36% for PLA production and 6% for transportation.
引用
收藏
页码:1915 / 1928
页数:14
相关论文
共 50 条
  • [21] Optimization of Fused Filament Fabrication for High-Performance Polylactic Acid Parts under Wear Conditions
    Batista, Moises
    Ramirez-Pena, Magdalena
    Salguero, Jorge
    Vazquez-Martinez, Juan Manuel
    LUBRICANTS, 2024, 12 (08)
  • [22] Polylactic acid-based composite using fused filament fabrication: Process optimization and biomedical application
    Choudhary, Neha
    Sharma, Varun
    Kumar, Pradeep
    POLYMER COMPOSITES, 2023, 44 (01) : 69 - 88
  • [23] Tailoring the vibration characteristics of carbon fiber-reinforced polylactic acid in fused filament fabrication process
    Babu, N. Vinoth
    Venkateshwaran, N.
    Selvan, S. Panneer
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024,
  • [24] Fused Filament Fabrication 3D Printing Parameters Affecting the Translucency of Polylactic Acid Parts
    Vochozka, Vladimir
    Cerny, Pavel
    Sramhauser, Karel
    Spalek, Frantisek
    Kriz, Pavel
    Cech, Jiri
    Zoubek, Tomas
    Bartos, Petr
    Kresan, Jan
    Stehlik, Radim
    POLYMERS, 2024, 16 (20)
  • [25] Characterization of short fiber-reinforced polylactic acid composites produced with Fused Filament Fabrication (FFF)
    Toth, Csenge
    Kovacs, Krisztian Norbert
    12TH HUNGARIAN CONFERENCE ON MATERIALS SCIENCE (HMSC12), 2020, 903
  • [26] A novel powder addition method for preparing polylactic acid (PLA)-based composite with fused filament fabrication
    Pratama, Juan
    Suyitno
    Badranaya, Muhammad I.
    Adib, Adam Z.
    Wijaya, Rahman
    Sandi, Aris
    Salim, Urip A.
    Saptoadi, Harwin
    Arifvianto, Budi
    Mahardika, Muslim
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (7-8): : 3513 - 3527
  • [27] Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures
    Nidhi Dixit
    Prashant K. Jain
    Journal of Materials Engineering and Performance, 2022, 31 : 5973 - 5982
  • [28] Anisotropic mechanical and sensing properties of carbon black-polylactic acid nanocomposites produced by fused filament fabrication
    Musenich, Ludovico
    Berardengo, Marta
    Avalle, Massimiliano
    Haj-Ali, Rami
    Sharabi, Mirit
    Libonati, Flavia
    SMART MATERIALS AND STRUCTURES, 2024, 33 (09)
  • [29] Correlation between Surface Texture, Wettability and Mechanical Strength of Polylactic Acid Parts Fabricated by Fused Filament Fabrication
    Banon-Garcia, Fermin
    Gamboa, Carolina Bermudo
    Lopez-Fernandez, Jose Andres
    Trujillo-Vilches, Francisco Javier
    Martin-Bejar, Sergio
    COATINGS, 2024, 14 (08)
  • [30] Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures
    Dixit, Nidhi
    Jain, Prashant K.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (07) : 5973 - 5982