An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus

被引:2
|
作者
Sagawa, Cintia H. D. [1 ]
Thomson, Geoffrey [1 ]
Mermaz, Benoit [1 ]
Vernon, Corina [1 ,2 ]
Liu, Siqi [1 ]
Jacob, Yannick [1 ]
Irish, Vivian F. [1 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] CUNY, Adv Sci Res Ctr, Environm Sci Initiat, New York, NY USA
关键词
CRISPR/Cas9; Citrus; Multiplex; Gene editing; Vector design; GENOME;
D O I
10.1186/s13007-024-01274-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus
    Boontawon, Tatpong
    Nakazawa, Takehito
    Inoue, Chikako
    Osakabe, Keishi
    Kawauchi, Moriyuki
    Sakamoto, Masahiro
    Honda, Yoichi
    AMB EXPRESS, 2021, 11 (01)
  • [32] Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus
    Tatpong Boontawon
    Takehito Nakazawa
    Chikako Inoue
    Keishi Osakabe
    Moriyuki Kawauchi
    Masahiro Sakamoto
    Yoichi Honda
    AMB Express, 11
  • [33] Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9
    Qiang Li
    Hui Wang
    Chen-yu Gong
    Zhao Chen
    Jia-xing Yang
    Hong-wei Shao
    Wen-feng Zhang
    Indian Journal of Microbiology, 2021, 61 : 91 - 95
  • [34] An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9
    Meng, Ruirui
    Wang, Chenchen
    Wang, Lihua
    Liu, Yanlong
    Zhan, Qiuwen
    Zheng, Jiacheng
    Li, Jieqin
    PEERJ, 2020, 8
  • [35] Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9
    Singh, Kshitiz
    Evens, Hanneke
    Nair, Nisha
    Rincon, Melvin Y.
    Sarcar, Shilpita
    Samara-Kuko, Ermira
    Chuah, Marinee K.
    VandenDriessche, Thierry
    MOLECULAR THERAPY, 2018, 26 (05) : 1241 - 1254
  • [36] SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods
    De Rouck, Sander
    Mocchetti, Antonio
    Dermauw, Wannes
    Van Leeuwen, Thomas
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2024, 165
  • [37] Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9
    Singh, Kshitiz
    Evens, Hanneke
    Rincon, Melvin
    Nair, Nisha
    Sarcar, Shilpita
    Samara-Kuko, Ermira
    Chuah, Marinee K.
    VandenDriessche, Thierry
    MOLECULAR THERAPY, 2016, 24 : S50 - S50
  • [38] CRISPR/CAS9 GENE EDITING TO BLOCK MALARIA TRANSMISSION
    Simoes, Maria
    Dong, Yuemei
    Dimopoulos, George
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2018, 99 (04): : 262 - 262
  • [39] CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives
    Naso, Gaetano
    Petrova, Anastasia
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (03) : 313 - 326
  • [40] CRISPR/Cas9 gene editing therapies for cystic fibrosis
    Graham, Carina
    Hart, Stephen
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2021, 21 (06) : 767 - 780