Hard WC-(Ti,W)C-10Co Alloy with Increased Hardness and Strength

被引:0
|
作者
Prokopiv, M. M. [1 ]
Kharchenko, O. V. [1 ]
Uschapovskyi, Yu. P. [1 ]
Lisovska, I. V. [2 ]
Zakiev, I. M. [3 ]
机构
[1] Natl Acad Sci Ukraine, Bakul Inst Superhard Mat, UA-04074 Kyiv, Ukraine
[2] Natl Tech Univ Ukraine Ihor Sikorskyi Kyiv Polytec, UA-03056 Kyiv, Ukraine
[3] Natl Aviat Univ Ukraine, UA-03680 Kyiv, Ukraine
关键词
hard alloy; free sintering; structure; properties; CEMENTED CARBIDE; TOOL LIFE; INSERTS; WEAR; SURFACE; POWDER; DRY;
D O I
10.3103/S1063457625010083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Some characteristics are reported for modified hard alloy T5K10 formed under the conditions of purposeful control over the thermokinetic free vacuum sintering parameters minimizing the processes of solid- and liquid-phase interaction between tungsten carbide and cobalt, which determine the redistribution and recrystallization of carbide grains. The synthesized WC-(Ti,W)C-10Co hard alloy is characterized by a homogeneous finely grained structure, a high density (rho = 12.98 g/cm(3)), a low level of residual microporosity, a bimodal composition of WC grains, and bridges between carbide grains. As compared to the commercial analogue, the synthesized hard alloy has a 2.4 GPa higher hardness (H-V = 15), a 270 MPa higher mechanical bending strength, a 1.4 MPa m(0.5) higher fracture toughness, and 1.5 times higher wear resistance. The modification of sintering technology and structural transformations in the synthesized WC-(Ti,W)C-10Co hard alloy have result in a 2.5-fold increase in its service durability during rough steel turning (forged axles of a railway wagons platform) and, in the case of deep soil chiseling, an increase in abrasion resistance is 48%.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [1] Formation of Layer WC-(Co,Ni,Al) Structure on the Cutting Plate Surface of WC-7(W,Ti)C-10Co Cemented Carbide in the Contact Area with Ni3Al Melt
    Prokopiv, M. M.
    JOURNAL OF SUPERHARD MATERIALS, 2019, 41 (03) : 149 - 156
  • [2] Formation of Layer WC-(Co,Ni,Al) Structure on the Cutting Plate Surface of WC-7(W,Ti)C-10Co Cemented Carbide in the Contact Area with Ni3Al Melt
    M. M. Prokopiv
    Journal of Superhard Materials, 2019, 41 : 149 - 156
  • [3] MIGRATION OF THE LIQUID-PHASE IN THE SYSTEM WC-(W, TI)C-CO
    LISOVSKII, AF
    GRACHEVA, TE
    SOVIET POWDER METALLURGY AND METAL CERAMICS, 1992, 31 (04): : 325 - 329
  • [4] Micromechanical properties of WC-(W,Ti,Ta,Nb)C-Co composites
    Sandoval, D. A.
    Roa, J. J.
    Ther, O.
    Tarres, E.
    Llanes, L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 : 593 - 601
  • [5] Sintering shrinkage of WC-Co and WC-(Ti,W)C-Co materials with different carbon contents
    Petersson, A
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2004, 22 (4-5): : 211 - 217
  • [6] Influence of defects on strength and hardness of submicron WC-8Co-1Cr3C2 hard alloy
    Dvornik, M. I.
    Zaytsev, A. V.
    Mikhailenko, E. A.
    ASIAN SCHOOL-CONFERENCE ON PHYSICS AND TECHNOLOGY OF NANOSTRUCTURED MATERIALS, 2012, 23 : 73 - 76
  • [7] Microstructure, composition distribution and rupture performance of WC-(Ti,W)C-Ti(C,N)-Co gradient cemented carbonitrides with varied nitrogen
    Yang, Tian'en
    Xiong, Ji
    JOURNAL OF MATERIALS RESEARCH, 2016, 31 (23) : 3795 - 3804
  • [8] Kinetics of compositional modification of (W, Ti)C-WC-Co alloy surfaces
    Schwarzkopf, M.
    Exner, H.E.
    Fischmeister, H.F.
    Schintlmeister, W.
    Materials Science and Engineering A, 1988, A105-6 (pt1) : 225 - 231
  • [9] KINETICS OF COMPOSITIONAL MODIFICATION OF (W, TI)C-WC-CO ALLOY SURFACES
    SCHWARZKOPF, M
    EXNER, HE
    FISCHMEISTER, HF
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1988, 105 : 225 - 231
  • [10] Microstructure, composition distribution and rupture performance of WC-(Ti,W)C-Ti(C,N)-Co gradient cemented carbonitrides with varied nitrogen
    Tian’en Yang
    Ji Xiong
    Journal of Materials Research, 2016, 31 : 3795 - 3804