Community dynamics in rhizosphere bacteria affected the adaptive growth of wheat in cadmium-contaminated soils

被引:0
|
作者
He, Zaimei [1 ]
Xiong, Ji [2 ]
Yu, Xianghai [1 ]
Wang, Yi [1 ]
Cheng, Yiran [3 ]
Zhou, Yonghong [1 ]
Kang, Houyang [1 ]
Zeng, Jian [2 ]
机构
[1] Sichuan Agr Univ, Triticeae Res Inst, Wenjiang 611130, Sichuan, Peoples R China
[2] Sichuan Agr Univ, Coll Resources, Wenjiang 611130, Sichuan, Peoples R China
[3] Sichuan Agr Univ, State Key Lab Crop Gene Explorat & Utilizat Southw, Wenjiang 611130, Sichuan, Peoples R China
关键词
Triticum aestivum; Soil Cd contamination; Adaptive growth; Bacterial community; Rhizosphere soil; METAL SOLUBILITY; ACCUMULATION; MINIMIZATION; TOLERANCE; RESISTANT;
D O I
10.1007/s12298-024-01532-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil cadmium (Cd) contamination in agriculture has intensified due to industrial development and human activities, which seriously affected the safety production in wheat. There are increasing evidences that rhizosphere bacteria contributed to alleviating Cd stress in plants, but the mechanism of how rhizosphere bacteria affecting the adaptive growth of wheat exposed to Cd contamination has not been extensively explored. Therefore, the rhizosphere bacterial community dynamics and plant growth for wheat were investigated under different levels of soil Cd contamination in accordance with risk control standard for soil contamination of agricultural land. The results showed that there was no significant difference in transport coefficient of Cd in wheat plants grown in different levels of soil Cd contamination conditions. Soil Cd contamination led to a decrease in soil pH value and an increase in exchangeable Cd content in rhizosphere soil. Although rhizosphere bacterial richness and diversity had no significant difference between soil Cd contamination conditions, as its community composition changed significantly. Under Cd contamination of risk screening value, Actinobacteria, Chloroflexi, and Nitrospira showed higher abundance, but Bacteroidetes, Patescibacteria, Sphingomonas, ADurbBin063-1 and Bryobacter were more prevalent under Cd contamination of risk intervention value. The enrichment of Patescibacteria, Proteobacteria and Acidobacteria was beneficial for Cd fixation, while Nitrospira enhanced nutrient uptake and utilization. Furthermore, Cd contamination with risk screening value enhanced the relationship among rhizosphere bacterial communities, and Cd contamination with risk intervention value increased the cooperative relationship among rhizosphere bacterial species. Additionally, soil Cd content showed a significantly positive correlation with Patescibacteria and ADurbBin063-1, and a significantly negative correlation with pH. Altogether, the shift in the community structures of rhizosphere bacterial was crucial for farmland protection and food safety in Cd polluted soil.
引用
收藏
页码:1841 / 1852
页数:12
相关论文
共 50 条
  • [31] The effects of biochar aging on rhizosphere microbial communities in cadmium-contaminated acid soil
    Bandara, Tharanga
    Krohn, Christian
    Jin, Jian
    Chathurika, J. B. A. J.
    Franks, Ashley
    Xu, Jianming
    Potter, Ian D.
    Tang, Caixian
    CHEMOSPHERE, 2022, 303
  • [32] Phytoremediation of Cadmium-Contaminated Soils: A Review of New Cadmium Hyperaccumulators and Factors Affecting their Efficiency
    Georgia Soubasakou
    Olga Cavoura
    Ioanna Damikouka
    Bulletin of Environmental Contamination and Toxicology, 2022, 109 : 783 - 787
  • [33] Life cycle toxicity assessment of earthworms exposed to cadmium-contaminated soils
    Chen, Wei-Yu
    Li, Wen-Hsuan
    Ju, Yun-Ru
    Liao, Chung-Min
    Liao, Vivian Hsiu-Chuan
    ECOTOXICOLOGY, 2017, 26 (03) : 360 - 369
  • [34] Cadmium-affected synthesis of exopolysaccharides by rhizosphere bacteria
    Kowalkowski, T.
    Krakowska, A.
    Zloch, M.
    Hrynkiewicz, K.
    Buszewski, B.
    JOURNAL OF APPLIED MICROBIOLOGY, 2019, 127 (03) : 713 - 723
  • [35] Removal of cadmium from cadmium-contaminated red soils using electrokinetic soil processing
    刘云国
    李程峰
    曾光明
    岳秀
    李欣
    徐卫华
    汤春芳
    袁兴中
    Transactions of Nonferrous Metals Society of China, 2005, (06) : 1394 - 1400
  • [36] Application of mixotrophic acidophiles for the bioremediation of cadmium-contaminated soils elevates cadmium removal, soil nutrient availability, and rice growth
    Yuan, Baoxing
    Huang, Lihua
    Liu, Xueduan
    Bai, Lianyang
    Liu, Hongwei
    Jiang, Huidan
    Zhu, Ping
    Xiao, Yunhua
    Geng, Jibiao
    Liu, Qianjin
    Hao, Xiaodong
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 236
  • [37] In-situ immobilisation techniques to remediate cadmium-contaminated agricultural soils
    McLaughlin, MJ
    Maier, NA
    Correll, RL
    Smart, MK
    Grant, CD
    CONTAMINATED SOIL '98, VOLS 1 AND 2, 1998, : 453 - 460
  • [38] Removal of cadmium from cadmium-contaminated red soils using electrokinetic soil processing
    Liu, YG
    Li, CF
    Zeng, GM
    Yue, X
    Li, X
    Xu, WH
    Tang, CF
    Yuan, XZ
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 (06) : 1394 - 1400
  • [39] Effects of Carbonaceous Materials with Different Structures on Cadmium Fractions and Microecology in Cadmium-Contaminated Soils
    Long, Zihan
    Ma, Chunya
    Zhu, Jian
    Wang, Ping
    Zhu, Yelin
    Liu, Zhiming
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (19)
  • [40] Phytoremediation of Cadmium-Contaminated Soils: A Review of New Cadmium Hyperaccumulators and Factors Affecting their Efficiency
    Soubasakou, Georgia
    Cavoura, Olga
    Damikouka, Ioanna
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 109 (05) : 783 - 787