Development of deep-underground engineering structures via 2D and 3D RQD prediction using non-invasive CSAMT

被引:0
|
作者
Hasan, Muhammad [1 ,2 ,3 ,4 ]
Su, Lijun [1 ,2 ,3 ]
Cui, Peng [1 ,2 ,3 ,5 ]
Shang, Yanjun [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Mt Hazards & Environm, State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China
[2] CAS HEC, Joint Res Ctr Earth Sci, Islamabad, Pakistan
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher & Environm Coevolut, Beijing 100029, Peoples R China
[5] Inst Geog Sci & Nat Resources Res CAS, Beijing, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Rock quality designation (RQD); Geotechnical engineering; Rock mass quality; Controlled-source audio-frequency magnetotellurics (CSAMT); Engineering structure; ELECTRICAL-RESISTIVITY; GEOPHYSICAL METHODS; WAVE VELOCITY; ROCK; INDEX; EXPLORATION; PARAMETERS; STRENGTH; TAIWAN; REGION;
D O I
10.1038/s41598-025-85626-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The stability criterion based on the characterization of rock masses can be used to advance deep underground engineering projects. A key geomechanical criterion in geotechnical engineering is rock quality designation (RQD), which assesses risk for engineering design success criteria. Time, cost, and credibility constraints make it difficult to accurately estimate RQD. Point-scale data makes engineering design less precise and confusing, while traditional drilling for RQD estimation are expensive and time-consuming. An innovative geophysical approach to 2D and 3D RQD estimation is presented in this study. It provides easier, faster, and cheaper access to geomechanical volumetric data. So far, no other work has used non-invasive CSAMT to estimate RQD over 1 km depth in a highly diverse rock setting. The suggested approach provides a more precise and thorough evaluation of the rock's integrity for the effective installation of the neutrino detector 700 m below ground. The results are significant because they help us make sense of complicated geological situations, estimate the likelihood of early collapse, and build deep underground structures safely, steadily, and affordably. Our approach leads to more objective indices, helps in the development of more accurate geotechnical structures, and reduces inconsistencies between appropriate geomechanical models and sparse data.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Study of development changes in kidneys of dogs by using 2D and 3D ultrasonography
    Dinesh
    Behl, S. M.
    Singh, Prem
    Tayal, Rishi
    Pal, Madan
    Chandolia, R. K.
    INDIAN JOURNAL OF ANIMAL RESEARCH, 2017, 51 (01) : 30 - 34
  • [32] Classification of occluded 2D objects using deep learning of 3D shape surfaces
    Tzitzilonis, Vasileios
    Kappatos, Vassilios
    Dermatas, Evangelos
    Apostolopoulos, George
    10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [33] 2D/3D Pose Estimation and Action Recognition using Multitask Deep Learning
    Luvizon, Diogo C.
    Picard, David
    Tabia, Hedi
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5137 - 5146
  • [34] Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR
    Faria, Margarida
    Ferreira, Antonio Sergio
    Perez-Leon, Hector
    Maza, Ivan
    Viguria, Antidio
    SENSORS, 2019, 19 (22)
  • [35] Effects of chemically EGFR targeting on non-targeted physical cell behaviors in 2D and 3D microfluidic cultures of invasive and non-invasive breast cancer cell lines
    Azadi, Shohreh
    Mohammadi, Ehsan
    Tafazzoli-Shadpour, Mohammad
    Tabatabaei, Mohammad
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 622 : 1 - 7
  • [36] Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning
    Zahia, Sofia
    Garcia-Zapirain, Begonya
    Elmaghraby, Adel
    SENSORS, 2020, 20 (10)
  • [37] Development of Data Acquisition System using non-invasive Hardware and 3D software for Electric all terrain Vehicle
    Sunagar, Akashaykumar H.
    Siddamal, Saroja V.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1212 - 1217
  • [38] Automated non-invasive quantification of myocardial work using 3D echocardiography and validation with invasive catheter measurements
    Creamer, S. A.
    Zhao, D.
    Quill, G. M.
    Edwards, N. C.
    Lowe, B. S.
    Legget, M. E.
    Doughty, R. N.
    Young, A. A.
    Paton, J. F. R.
    Talou, G. D. Maso
    Nash, M. P.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [39] Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning
    Fischman, Sebastien
    Perez-Anker, Javiera
    Tognetti, Linda
    Di Naro, Angelo
    Suppa, Mariano
    Cinotti, Elisa
    Viel, Theo
    Monnier, Jilliana
    Rubegni, Pietro
    del Marmol, Veronique
    Malvehy, Josep
    Puig, Susana
    Dubois, Arnaud
    Perrot, Jean-Luc
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Automated non-invasive quantification of myocardial work using 3D echocardiography and validation with invasive catheter measurements
    Creamer, S. A.
    Zhao, D.
    Quill, G. M.
    Edwards, N. C.
    Lowe, B. S.
    Legget, M. E.
    Doughty, R. N.
    Young, A. A.
    Paton, J. F. R.
    Talou, G. D. Maso
    Nash, M. P.
    EUROPEAN HEART JOURNAL, 2024, 45