On the blow-up profile of Keller–Segel–Patlak systemOn the blow-up profile of Keller–Segel–Patlak systemX. Bai, M. Zhou

被引:0
|
作者
Xueli Bai [1 ]
Maolin Zhou [2 ]
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
[2] Research Institute of Northwestern Polytechnical University in Shenzhen,Chern Institute of Mathematics and LPMC
[3] Nankai University,undefined
关键词
92C17; 35B40; 35B44; 35K40;
D O I
10.1007/s00208-025-03102-z
中图分类号
学科分类号
摘要
In this paper, we obtain the sharp estimate on the asymptotic behaviors of blow-up profiles for Keller–Segel–Patlak system in the space with dimensions N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}: 0.1ut=Δu-∇·(u∇v),x∈RN,t∈(0,T),0=Δv+u,x∈RN,t∈(0,T),u(x,0)=u0(x),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} u_t = \Delta u - \nabla \cdot (u\nabla v), & x\in \mathbb {R}^N, \ t\in (0,T), \\ 0 = \Delta v+u, & x\in \mathbb {R}^N, \ t\in (0,T), \\ u(x,0)=u_0(x), & x\in \mathbb {R}^N, \end{array} \right. \end{aligned}$$\end{document}which solves an open problem proposed by Souplet and Winkler in [41]. To establish this result, we develop the zero number argument for nonlinear equations with unbounded coefficients and construct a family of auxiliary backward self-similar solutions through nontrivial ODE analysis.
引用
收藏
页码:313 / 337
页数:24
相关论文
共 50 条
  • [21] Blow-up behavior of solutions to a degenerate parabolic–parabolic Keller–Segel system
    Kazuhiro Ishige
    Philippe Laurençot
    Noriko Mizoguchi
    Mathematische Annalen, 2017, 367 : 461 - 499
  • [22] A blow-up criterion to a Keller-Segel system coupled with the Euler fluid
    Chen, Miaochao
    Lu, Shengqi
    Liu, Qilin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 6359 - 6367
  • [23] Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant
    Jiang, Jie
    Wu, Hao
    Zheng, Songmu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (08) : 5432 - 5464
  • [25] Existence and Stability of Infinite Time Blow-Up in the Keller-Segel System
    Davila, Juan
    del Pino, Manuel
    Dolbeault, Jean
    Musso, Monica
    Wei, Juncheng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (04)
  • [26] Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems
    Freitag, Marcel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 964 - 988
  • [27] Volume effects in the Keller-Segel model: energy estimates preventing blow-up
    Calvez, Vincent
    Carrillo, Jose A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02): : 155 - 175
  • [28] Radial blow-up in quasilinear Keller-Segel systems: approaching the full picture
    Ding, Mengyao
    Winkler, Michael
    NONLINEARITY, 2024, 37 (12)
  • [29] Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type
    Sugiyama, Yoshie
    Yahagi, Yumi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (07) : 3047 - 3087
  • [30] Well-posedness and blow-up of the fractional Keller-Segel model on domains
    Costa, Masterson
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5569 - 5592