Generative Adversarial Networks Based Framework for Music Genre Classification

被引:0
|
作者
Pulkit Dwivedi [1 ]
Benazir Islam [2 ]
机构
[1] IILM University,School of Computer Science and Engineering
[2] New Jersey Institute of Technology,undefined
关键词
Music genre classification; Generative adversarial networks (GANs); Deep learning; Feature extraction; Classification models;
D O I
10.1007/s42979-024-03531-8
中图分类号
学科分类号
摘要
Music genre classification plays a crucial role in organizing and exploring large music collections, enabling personalized music recommendations, and enhancing music-related services. This paper presents a novel approach to music genre classification using Generative Adversarial Networks (GANs), Fourier Transform, and Wavelet Transform. The main objective is to leverage the power of GANs to extract discriminative features from audio data and accurately classify music into different genres. The proposed methodology involves two key components: the generator and the discriminator. The generator generates synthetic audio samples that resemble real music, while the discriminator learns to distinguish between real and synthetic audio samples. By training the GAN on a diverse dataset of music samples from various genres, the discriminator becomes proficient in recognizing genre-specific features. To enhance classification accuracy, Fourier Transform and Wavelet Transform are applied to extract both frequency and time-domain features from the audio data. Additionally, classifiers such as support vector machines and neural networks are employed to effectively distinguish between different music genres. The experimental results demonstrate the effectiveness of the proposed approach across multiple datasets. The method achieves 98.97% accuracy on the GTZAN dataset, 92.47% accuracy on the FMA-Small dataset, and 92.98% accuracy on the ISMIR Genre dataset, significantly outperforming traditional classification methods These results highlight the power of GANs, Fourier Transform, and Wavelet Transform in enhancing the accuracy and robustness of music genre classification.
引用
收藏
相关论文
共 50 条
  • [21] Remote sensing image scene classification based on generative adversarial networks
    Xu, Suhui
    Mu, Xiaodong
    Chai, Dong
    Zhang, Xiongmei
    REMOTE SENSING LETTERS, 2018, 9 (07) : 617 - 626
  • [22] Ensemble Deep Learning Classification Method Based on Generative Adversarial Networks
    Shen, Haoyuan
    Lin, Chenglong
    Ma, Yizhong
    Xie, En
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 46 - 53
  • [23] CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks
    Chae, Dong-Kyu
    Kang, Jin-Soo
    Kim, Sang-Wook
    Lee, Jung-Tae
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 137 - 146
  • [24] LiDAR Data Classification Based on Improved Conditional Generative Adversarial Networks
    Wang, Aili
    Xue, Dong
    Wu, Haibin
    Iwahori, Yuji
    IEEE ACCESS, 2020, 8 : 209674 - 209686
  • [25] A Study on Broadcast Networks for Music Genre Classification
    Heakl, Ahmed
    Abdelgawad, Abdelrahman
    Parque, Victor
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [26] Recurrent Neural Networks for Music Genre Classification
    Kakarla, Chaitanya
    Eshwarappa, Vidyashree
    Saheer, Lakshmi Babu
    Oghaz, Mahdi Maktabdar
    ARTIFICIAL INTELLIGENCE XXXIX, AI 2022, 2022, 13652 : 267 - 279
  • [27] GLSI Texture Descriptor Based on Complex Networks for Music Genre Classification
    Coca Salazar, Andres Eduardo
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [28] Diabetic retinopathy classification via Generative Adversarial Networks
    Mirabedini, Shirin
    Kangavari, Mohammadreza
    Mohammadzadeh, Javad
    BIOSCIENCE RESEARCH, 2020, 17 (02): : 1329 - 1338
  • [29] Improving ECG Classification Using Generative Adversarial Networks
    Golany, Tomer
    Lavee, Gal
    Yarden, Shai Tejman
    Radinsky, Kira
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13280 - 13285
  • [30] A framework for personalized recommendation with conditional generative adversarial networks
    Wen, Jing
    Zhu, Xi-Ran
    Wang, Chang-Dong
    Tian, Zhihong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (10) : 2637 - 2660