Generative Adversarial Networks Based Framework for Music Genre Classification

被引:0
|
作者
Pulkit Dwivedi [1 ]
Benazir Islam [2 ]
机构
[1] IILM University,School of Computer Science and Engineering
[2] New Jersey Institute of Technology,undefined
关键词
Music genre classification; Generative adversarial networks (GANs); Deep learning; Feature extraction; Classification models;
D O I
10.1007/s42979-024-03531-8
中图分类号
学科分类号
摘要
Music genre classification plays a crucial role in organizing and exploring large music collections, enabling personalized music recommendations, and enhancing music-related services. This paper presents a novel approach to music genre classification using Generative Adversarial Networks (GANs), Fourier Transform, and Wavelet Transform. The main objective is to leverage the power of GANs to extract discriminative features from audio data and accurately classify music into different genres. The proposed methodology involves two key components: the generator and the discriminator. The generator generates synthetic audio samples that resemble real music, while the discriminator learns to distinguish between real and synthetic audio samples. By training the GAN on a diverse dataset of music samples from various genres, the discriminator becomes proficient in recognizing genre-specific features. To enhance classification accuracy, Fourier Transform and Wavelet Transform are applied to extract both frequency and time-domain features from the audio data. Additionally, classifiers such as support vector machines and neural networks are employed to effectively distinguish between different music genres. The experimental results demonstrate the effectiveness of the proposed approach across multiple datasets. The method achieves 98.97% accuracy on the GTZAN dataset, 92.47% accuracy on the FMA-Small dataset, and 92.98% accuracy on the ISMIR Genre dataset, significantly outperforming traditional classification methods These results highlight the power of GANs, Fourier Transform, and Wavelet Transform in enhancing the accuracy and robustness of music genre classification.
引用
收藏
相关论文
共 50 条
  • [1] Music style migration based on generative Adversarial Networks
    Ji, Zhen
    Shen, Dan
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 118 : 292 - 305
  • [2] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [3] A Framework for Segmentation and Classification of Blood Cells Using Generative Adversarial Networks
    Khan, Zakir
    Shirazi, Syed Hamad
    Shahzad, Muhammad
    Munir, Arslan
    Rasheed, Assad
    Xie, Yong
    Gul, Sarah
    IEEE ACCESS, 2024, 12 : 51995 - 52015
  • [4] Cancer classification with data augmentation based on generative adversarial networks
    Wei, Kaimin
    Li, Tianqi
    Huang, Feiran
    Chen, Jinpeng
    He, Zefan
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [5] A deep data augmentation framework based on generative adversarial networks
    Wang, Qiping
    Luo, Ling
    Xie, Haoran
    Rao, Yanghui
    Lau, Raymond Y. K.
    Zhang, Detian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42871 - 42887
  • [6] Generative adversarial networks and image-based malware classification
    Nguyen, Huy
    Di Troia, Fabio
    Ishigaki, Genya
    Stamp, Mark
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2023, 19 (04) : 579 - 595
  • [7] A deep data augmentation framework based on generative adversarial networks
    Qiping Wang
    Ling Luo
    Haoran Xie
    Yanghui Rao
    Raymond Y.K. Lau
    Detian Zhang
    Multimedia Tools and Applications, 2022, 81 : 42871 - 42887
  • [8] Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks
    Zhan, Ying
    Hu, Dan
    Wang, Yuntao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (02) : 212 - 216
  • [9] Cancer classification with data augmentation based on generative adversarial networks
    Kaimin Wei
    Tianqi Li
    Feiran Huang
    Jinpeng Chen
    Zefan He
    Frontiers of Computer Science, 2022, 16
  • [10] Generative adversarial networks and image-based malware classification
    Huy Nguyen
    Fabio Di Troia
    Genya Ishigaki
    Mark Stamp
    Journal of Computer Virology and Hacking Techniques, 2023, 19 : 579 - 595