Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence

被引:0
|
作者
Julius Keyl [1 ]
Philipp Keyl [2 ]
Grégoire Montavon [3 ]
René Hosch [4 ]
Alexander Brehmer [4 ]
Liliana Mochmann [5 ]
Philipp Jurmeister [6 ]
Gabriel Dernbach [1 ]
Moon Kim [1 ]
Sven Koitka [3 ]
Sebastian Bauer [3 ]
Nikolaos Bechrakis [5 ]
Michael Forsting [1 ]
Dagmar Führer-Sakel [1 ]
Martin Glas [7 ]
Viktor Grünwald [8 ]
Boris Hadaschik [9 ]
Johannes Haubold [10 ]
Ken Herrmann [11 ]
Stefan Kasper [9 ]
Rainer Kimmig [10 ]
Stephan Lang [11 ]
Tienush Rassaf [12 ]
Alexander Roesch [7 ]
Dirk Schadendorf [9 ]
Jens T. Siveke [11 ]
Martin Stuschke [9 ]
Ulrich Sure [10 ]
Matthias Totzeck [13 ]
Anja Welt [9 ]
Marcel Wiesweg [10 ]
Hideo A. Baba [11 ]
Felix Nensa [14 ]
Jan Egger [8 ]
Klaus-Robert Müller [9 ]
Martin Schuler [10 ]
Frederick Klauschen [11 ]
Jens Kleesiek [15 ]
机构
[1] University Hospital Essen (AöR),Institute for Artificial Intelligence in Medicine
[2] University Hospital Essen (AöR),Institute of Pathology
[3] Ludwig-Maximilians-University Munich,Institute of Pathology
[4] BIFOLD – Berlin Institute for the Foundations of Learning and Data,Machine Learning Group
[5] Technical University of Berlin,Department of Mathematics and Computer Science
[6] Freie Universität Berlin,Institute for Diagnostic and Interventional Radiology and Neuroradiology
[7] University Hospital Essen (AöR),Department of Medical Oncology
[8] University Hospital Essen (AöR),Medical Faculty
[9] University of Duisburg-Essen,West German Cancer Center
[10] University Hospital Essen (AöR),German Cancer Consortium (DKTK)
[11] Partner site University Hospital Essen (AöR),Department of Ophthalmology
[12] University Hospital Essen (AöR),Department of Endocrinology, Diabetes and Metabolism
[13] University Hospital Essen (AöR),Division of Clinical Neurooncology, Department of Neurology and Center for Translational Neuro
[14] University Duisburg-Essen, and Behavioral Sciences (C
[15] University Hospital Essen (AöR),TNBS), University Medicine Essen
[16] University Hospital Essen (AöR),Department of Urology
[17] University Hospital Essen (AöR),Department of Nuclear Medicine
[18] University Hospital Essen (AöR),Department of Gynecology and Obstetrics
[19] University Hospital Essen (AöR),Department of Otorhinolaryngology
[20] University Hospital Essen (AöR),Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen
[21] University of Duisburg-Essen,Department of Dermatology
[22] University of Duisburg-Essen,Research Alliance Ruhr, Research Center One Health
[23] DKFZ,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen (AöR)
[24] University Hospital Essen (AöR),Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center
[25] University Hospital Essen (AöR),Department of Radiotherapy
[26] Korea University,Department of Neurosurgery and Spine Surgery
[27] MPI for Informatics,Department of Artificial Intelligence
[28] Berlin partner site,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)
[29] Munich partner site,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)
[30] Bavarian Cancer Research Center (BZKF),undefined
关键词
D O I
10.1038/s43018-024-00891-1
中图分类号
学科分类号
摘要
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90% of the neural network’s decision process. Moreover, xAI enabled us to uncover 1,373 prognostic interactions between markers. Our approach was validated in an independent cohort of 3,288 patients with lung cancer from a US nationwide electronic health record-derived database. These results show the potential of xAI to transform the assessment of clinical variables and enable personalized, data-driven cancer care.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 50 条
  • [31] Real-world treatment outcomes of metastatic pancreatic cancer in Japan: Tokushukai REAl-world Data project 03 (TREAD 03)
    Shimoyama, Rai
    Imamura, Yoshinori
    Uryu, Kiyoaki
    Mase, Takahiro
    Fujimura, Yoshiaki
    Hayashi, Maki
    Ohtaki, Megu
    Otani, Keiko
    Shinozaki, Nobuaki
    Minami, Hironobu
    ANNALS OF ONCOLOGY, 2022, 33 : S484 - S485
  • [32] Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan
    Kanda, Eiichiro
    Epureanu, Bogdan I.
    Adachi, Taiji
    Tsuruta, Yuki
    Kikuchi, Kan
    Kashihara, Naoki
    Abe, Masanori
    Masakane, Ikuto
    Nitta, Kosaku
    PLOS ONE, 2020, 15 (05):
  • [33] Validating the Generalizability of Ophthalmic Artificial Intelligence Models on Real-World Clinical Data
    Rashidisabet, Homa
    Sethi, Abhishek
    Jindarak, Ponpawee
    Edmonds, James
    Chan, R. V. Paul
    Leiderman, Yannek I.
    Vajaranant, Thasarat Sutabutr
    Yi, Darvin
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (11):
  • [34] Digital Therapeutics: Virtual Coaching Powered by Artificial Intelligence on Real-World Data
    op den Akker, Harm
    Cabrita, Miriam
    Pnevmatikakis, Aristodemos
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [35] Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
    Kalra, Shivam
    Tizhoosh, H. R.
    Shah, Sultaan
    Choi, Charles
    Damaskinos, Savvas
    Safarpoor, Amir
    Shafiei, Sobhan
    Babaie, Morteza
    Diamandis, Phedias
    Campbell, Clinton J. V.
    Pantanowitz, Liron
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [36] Artificial intelligence-based pulmonary embolism classification: Development and validation using real-world data
    da Silva, Luan Oliveira
    da Silva, Maria Carolina Bueno
    Ribeiro, Guilherme Alberto Sousa
    de Camargo, Thiago Fellipe Ortiz
    dos Santos, Paulo Victor
    Mendes, Giovanna de Souza
    de Paiva, Joselisa Peres Queiroz
    Soares, Anderson da Silva
    Reis, Marcio Rodrigues da Cunha
    Loureiro, Rafael Maffei
    Calixto, Wesley Pacheco
    PLOS ONE, 2024, 19 (08):
  • [37] Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
    Shivam Kalra
    H. R. Tizhoosh
    Sultaan Shah
    Charles Choi
    Savvas Damaskinos
    Amir Safarpoor
    Sobhan Shafiei
    Morteza Babaie
    Phedias Diamandis
    Clinton J. V. Campbell
    Liron Pantanowitz
    npj Digital Medicine, 3
  • [38] Timely and comprehensive real-world data for optimizing lung cancer treatment and outcomes for Australians
    Tang, Monica
    Daniels, Benjamin
    Coory, Michael
    Pearson, Sallie-Anne
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2023, 19 (03) : 413 - 414
  • [39] Pan-cancer analysis of clinical acquired resistance (AR) in BRAF-driven real-world cases
    Pietrantonio, F.
    Lee, J.
    Boussemart, L.
    Schinke, C.
    Srkalovic, G.
    Madison, R.
    Ross, J. S.
    Miller, V. A.
    Alexander, B. M.
    Ali, S. M.
    Schrock, A. B.
    Daniels, G. A.
    ANNALS OF ONCOLOGY, 2019, 30 : 762 - +
  • [40] A Study on Treatment and Characteristics of Prostate Cancer Patients Using Real-World Data
    Miranda, Jamilette
    Lilja, Birgitta
    Wettermark, Bjoern
    Ljunggren, Gunnar
    Henriksson, Roger
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2015, 24 : 533 - 533